IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3160-d564434.html
   My bibliography  Save this article

A Low-Cost Sustainable Energy Solution for Pristine Mountain Areas of Developing Countries

Author

Listed:
  • Shakil Rehman Sheikh

    (Department of Mechatronics Engineering, Sector E-9, Air University, Islamabad 44000, Pakistan)

  • Syed Hassan Raza Shah

    (Aerospace Engineering Department, Samuel Ginn College of Engineering, Auburn University, Auburn, AL 36849, USA)

  • Umar Rauf

    (Department of Mechanical Engineering, Bilkent University, 06800 Ankara, Turkey)

  • Fawad Rauf

    (College of Business, Engineering and Technology, Texas A&M University-Texarkana, Texarkana, TX 75503, USA)

  • Zareena Kausar

    (Department of Mechatronics Engineering, Sector E-9, Air University, Islamabad 44000, Pakistan)

  • Umair Aziz

    (Department of Mechatronics Engineering, Sector E-9, Air University, Islamabad 44000, Pakistan)

  • Muhammad Faizan Shah

    (Department of Mechanical Engineering, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan)

  • Haseeb Yaqoob

    (Department of Mechanical Engineering, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan)

  • Muhammad Bilal Khan Niazi

    (Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan)

Abstract

The rise in energy requirements and its shortfall in developing countries have affected socioeconomic life. Communities in remote mountainous regions in Asia are among the most affected by energy deprivation. This study presents the feasibility of an alternate strategy of supplying clean energy to the areas consisting of pristine mountains and forest terrain. Southeast Asia has a much-diversified landscape and varied natural resources, including abundant water resources. The current study is motivated by this abundant supply of streams which provides an excellent environment for run-of-river micro vertical axis water turbines. However, to limit the scope of the study, the rivers and streams flowing in northern areas of Pakistan are taken as the reference. The study proposes a comprehensive answer for supplying low-cost sustainable energy solutions for such remote communities. The suggested solution consists of a preliminary hydrodynamic design using Qblade, further analysis using numerical simulations, and finally, experimental testing in a real-world environment. The results of this study show that the use of microturbines is a very feasible option considering that the power generation density of the microturbine comes out to be approximately 2100 kWh/year/m 2 , with minimal adverse effects on the environment.

Suggested Citation

  • Shakil Rehman Sheikh & Syed Hassan Raza Shah & Umar Rauf & Fawad Rauf & Zareena Kausar & Umair Aziz & Muhammad Faizan Shah & Haseeb Yaqoob & Muhammad Bilal Khan Niazi, 2021. "A Low-Cost Sustainable Energy Solution for Pristine Mountain Areas of Developing Countries," Energies, MDPI, vol. 14(11), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3160-:d:564434
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3160/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3160/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Furukawa, Kazuma & Yamamoto, Masayuki, 2015. "Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine," Energy, Elsevier, vol. 90(P1), pages 784-795.
    2. Tummala, Abhishiktha & Velamati, Ratna Kishore & Sinha, Dipankur Kumar & Indraja, V. & Krishna, V. Hari, 2016. "A review on small scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1351-1371.
    3. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    4. Howell, Robert & Qin, Ning & Edwards, Jonathan & Durrani, Naveed, 2010. "Wind tunnel and numerical study of a small vertical axis wind turbine," Renewable Energy, Elsevier, vol. 35(2), pages 412-422.
    5. Khan, M.J. & Bhuyan, G. & Iqbal, M.T. & Quaicoe, J.E., 2009. "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review," Applied Energy, Elsevier, vol. 86(10), pages 1823-1835, October.
    6. Shukla, Vivek & Kaviti, Ajay Kumar, 2017. "Performance evaluation of profile modifications on straight-bladed vertical axis wind turbine by energy and Spalart Allmaras models," Energy, Elsevier, vol. 126(C), pages 766-795.
    7. Chen, Wei-Hsin & Chen, Ching-Ying & Huang, Chun-Yen & Hwang, Chii-Jong, 2017. "Power output analysis and optimization of two straight-bladed vertical-axis wind turbines," Applied Energy, Elsevier, vol. 185(P1), pages 223-232.
    8. Chehouri, Adam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2015. "Review of performance optimization techniques applied to wind turbines," Applied Energy, Elsevier, vol. 142(C), pages 361-388.
    9. Amjad Ali & Wuhua Li & Rashid Hussain & Xiangning He & Barry W. Williams & Abdul Hameed Memon, 2017. "Overview of Current Microgrid Policies, Incentives and Barriers in the European Union, United States and China," Sustainability, MDPI, vol. 9(7), pages 1-28, June.
    10. Elbatran, A.H. & Yaakob, O.B. & Ahmed, Yasser M. & Shabara, H.M., 2015. "Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 40-50.
    11. Georgilakis, Pavlos S., 2008. "Technical challenges associated with the integration of wind power into power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 852-863, April.
    12. Ma, Ning & Lei, Hang & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhang, Kai & Zhou, Lei & Chen, Caiyong, 2018. "Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio," Energy, Elsevier, vol. 150(C), pages 236-252.
    13. Islam, Mazharul & Ting, David S.-K. & Fartaj, Amir, 2008. "Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1087-1109, May.
    14. Bedon, Gabriele & Raciti Castelli, Marco & Benini, Ernesto, 2013. "Optimization of a Darrieus vertical-axis wind turbine using blade element – momentum theory and evolutionary algorithm," Renewable Energy, Elsevier, vol. 59(C), pages 184-192.
    15. Emanuele Quaranta & Manuel Bonjean & Damiano Cuvato & Christophe Nicolet & Matthieu Dreyer & Anthony Gaspoz & Samuel Rey-Mermet & Bruno Boulicaut & Luigi Pratalata & Marco Pinelli & Giuseppe Tomaselli, 2020. "Hydropower Case Study Collection: Innovative Low Head and Ecologically Improved Turbines, Hydropower in Existing Infrastructures, Hydropeaking Reduction, Digitalization and Governing Systems," Sustainability, MDPI, vol. 12(21), pages 1-78, October.
    16. Hwang, In Seong & Lee, Yun Han & Kim, Seung Jo, 2009. "Optimization of cycloidal water turbine and the performance improvement by individual blade control," Applied Energy, Elsevier, vol. 86(9), pages 1532-1540, September.
    17. Jenniches, Simon, 2018. "Assessing the regional economic impacts of renewable energy sources – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 35-51.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Ning & Lei, Hang & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhang, Kai & Zhou, Lei & Chen, Caiyong, 2018. "Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio," Energy, Elsevier, vol. 150(C), pages 236-252.
    2. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 197(C), pages 132-150.
    3. Peng, H.Y. & Liu, M.N. & Liu, H.J. & Lin, K., 2022. "Optimization of twin vertical axis wind turbines through large eddy simulations and Taguchi method," Energy, Elsevier, vol. 240(C).
    4. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    5. Chen, Jian & Pan, Xiong & Wang, Canxing & Hu, Guojun & Xu, Hongtao & Liu, Pengwei, 2019. "Airfoil parameterization evaluation based on a modified PARASEC method for a H-Darrious rotor," Energy, Elsevier, vol. 187(C).
    6. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    7. Kumar, Rakesh & Raahemifar, Kaamran & Fung, Alan S., 2018. "A critical review of vertical axis wind turbines for urban applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 281-291.
    8. Li, Chao & Xiao, Yiqing & Xu, You-lin & Peng, Yi-xin & Hu, Gang & Zhu, Songye, 2018. "Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations," Applied Energy, Elsevier, vol. 212(C), pages 1107-1125.
    9. Trentin, Pedro Francisco Silva & Martinez, Pedro Henrique Barsanaor de Barros & dos Santos, Gabriel Bertacco & Gasparin, Elóy Esteves & Salviano, Leandro Oliveira, 2022. "Screening analysis and unconstrained optimization of a small-scale vertical axis wind turbine," Energy, Elsevier, vol. 240(C).
    10. Liu, Qingsong & Miao, Weipao & Ye, Qi & Li, Chun, 2022. "Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 185(C), pages 1124-1138.
    11. Peng, H.Y. & Lam, H.F. & Liu, H.J., 2019. "Power performance assessment of H-rotor vertical axis wind turbines with different aspect ratios in turbulent flows via experiments," Energy, Elsevier, vol. 173(C), pages 121-132.
    12. Li, Qingan & Cai, Chang & Maeda, Takao & Kamada, Yasunari & Shimizu, Kento & Dong, Yehong & Zhang, Fanghong & Xu, Jianzhong, 2021. "Visualization of aerodynamic forces and flow field on a straight-bladed vertical axis wind turbine by wind tunnel experiments and panel method," Energy, Elsevier, vol. 225(C).
    13. Lee, Kung-Yen & Tsao, Shao-Hua & Tzeng, Chieh-Wen & Lin, Huei-Jeng, 2018. "Influence of the vertical wind and wind direction on the power output of a small vertical-axis wind turbine installed on the rooftop of a building," Applied Energy, Elsevier, vol. 209(C), pages 383-391.
    14. Samuel Mitchell & Iheanyichukwu Ogbonna & Konstantin Volkov, 2021. "Improvement of Self-Starting Capabilities of Vertical Axis Wind Turbines with New Design of Turbine Blades," Sustainability, MDPI, vol. 13(7), pages 1-24, March.
    15. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    16. Chong, Wen-Tong & Muzammil, Wan Khairul & Wong, Kok-Hoe & Wang, Chin-Tsan & Gwani, Mohammed & Chu, Yung-Jeh & Poh, Sin-Chew, 2017. "Cross axis wind turbine: Pushing the limit of wind turbine technology with complementary design," Applied Energy, Elsevier, vol. 207(C), pages 78-95.
    17. Zhang, Lijun & Gu, Jiawei & Zhu, Huaibao & Hu, Kuoliang & Li, Xiang & Jiao, Liuyang & Miao, Junjie & Liu, Jing & Wang, Zhiwei, 2021. "Rationality research of the adjustment law for the blade pitch angle of H-type vertical-axis wind turbines," Renewable Energy, Elsevier, vol. 167(C), pages 484-496.
    18. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2018. "Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades," Energy, Elsevier, vol. 165(PB), pages 1129-1148.
    19. Kuang, Limin & Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Zhang, Kai & Zhao, Yongsheng & Bao, Yan, 2022. "Wind-capture-accelerate device for performance improvement of vertical-axis wind turbines: External diffuser system," Energy, Elsevier, vol. 239(PB).
    20. Ardaneh, Fatemeh & Abdolahifar, Abolfazl & Karimian, S.M.H., 2022. "Numerical analysis of the pitch angle effect on the performance improvement and flow characteristics of the 3-PB Darrieus vertical axis wind turbine," Energy, Elsevier, vol. 239(PD).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3160-:d:564434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.