IDEAS home Printed from
   My bibliography  Save this article

Transmission alternatives for offshore electrical power


  • de Alegría, Iñigo Martínez
  • Martín, Jose Luis
  • Kortabarria, Iñigo
  • Andreu, Jon
  • Ereño, Pedro Ibañez


The oceans represent a huge energy reservoir. Although today all of the marine power projects are very near from the shore and they are rated at low power, the huge potential of the seas may in a not very distant future bring marine power further into the sea. Also offshore oil and gas exploration is moving into deeper waters and at longer distances from land. New carbon sequestration projects under the seabed are on the way which require a vast amount of electric power consumption. The substitution of offshore power generators by power provided from the grid may have environmental benefits, but the deployment of offshore transmission of bulk electrical power to or from offshore platforms to the electrical grid onshore is a mayor challenge. The main objective of this paper is to focus on trends that can lead to a feasible transmission system in offshore energy systems far from land, and to introduce the technological alternatives which could help to reach that goal. The paper describes the main alternatives and the technical and economical aspects of the transmission of electrical power offshore.

Suggested Citation

  • de Alegría, Iñigo Martínez & Martín, Jose Luis & Kortabarria, Iñigo & Andreu, Jon & Ereño, Pedro Ibañez, 2009. "Transmission alternatives for offshore electrical power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1027-1038, June.
  • Handle: RePEc:eee:rensus:v:13:y:2009:i:5:p:1027-1038

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. de Alegría, Iñigo Martinez & Andreu, Jon & Martín, José Luis & Ibañez, Pedro & Villate, José Luis & Camblong, Haritza, 2007. "Connection requirements for wind farms: A survey on technical requierements and regulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1858-1872, October.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Beels, Charlotte & Troch, Peter & Kofoed, Jens Peter & Frigaard, Peter & Vindahl Kringelum, Jon & Carsten Kromann, Peter & Heyman Donovan, Martin & De Rouck, Julien & De Backer, Griet, 2011. "A methodology for production and cost assessment of a farm of wave energy converters," Renewable Energy, Elsevier, vol. 36(12), pages 3402-3416.
    2. Velasco, D. & Trujillo, C.L. & Peña, R.A., 2011. "Power transmission in direct current. Future expectations for Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 759-765, January.
    3. Delucchi, Mark A. & Jacobson, Mark Z., 2011. "Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies," Energy Policy, Elsevier, vol. 39(3), pages 1170-1190, March.
    4. Blond, S. Le & Bertho, R. & Coury, D.V. & Vieira, J.C.M., 2016. "Design of protection schemes for multi-terminal HVDC systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 965-974.
    5. repec:eee:rensus:v:77:y:2017:i:c:p:536-550 is not listed on IDEAS
    6. Islam, A.B.M. Saiful & Jameel, Mohammed & Jumaat, Mohd Zamin & Shirazi, S.M. & Salman, Firas A., 2012. "Review of offshore energy in Malaysia and floating Spar platform for sustainable exploration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6268-6284.
    7. Möller, Bernd, 2011. "Continuous spatial modelling to analyse planning and economic consequences of offshore wind energy," Energy Policy, Elsevier, vol. 39(2), pages 511-517, February.
    8. Orlandini, Valentina & Pierobon, Leonardo & Schløer, Signe & De Pascale, Andrea & Haglind, Fredrik, 2016. "Dynamic performance of a novel offshore power system integrated with a wind farm," Energy, Elsevier, vol. 109(C), pages 236-247.
    9. Ruddy, Jonathan & Meere, Ronan & O’Donnell, Terence, 2016. "Low Frequency AC transmission for offshore wind power: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 75-86.
    10. Rouzbehi, Kumars & Candela, J. Ignacio & Gharehpetian, Gevork B. & Harnefors, Lennart & Luna, Alvaro & Rodriguez, Pedro, 2017. "Multiterminal DC grids: Operating analogies to AC power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 886-895.
    11. Kaiser, Mark J. & Snyder, Brian F., 2013. "Modeling offshore wind installation costs on the U.S. Outer Continental Shelf," Renewable Energy, Elsevier, vol. 50(C), pages 676-691.
    12. Domínguez-García, José Luis & Rogers, Daniel J. & Ugalde-Loo, Carlos E. & Liang, Jun & Gomis-Bellmunt, Oriol, 2012. "Effect of non-standard operating frequencies on the economic cost of offshore AC networks," Renewable Energy, Elsevier, vol. 44(C), pages 267-280.
    13. Madariaga, A. & de Alegría, I. Martínez & Martín, J.L. & Eguía, P. & Ceballos, S., 2012. "Current facts about offshore wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3105-3116.
    14. Rourke, Fergal O. & Boyle, Fergal & Reynolds, Anthony, 2010. "Marine current energy devices: Current status and possible future applications in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1026-1036, April.
    15. López, Iraide & Andreu, Jon & Ceballos, Salvador & Martínez de Alegría, Iñigo & Kortabarria, Iñigo, 2013. "Review of wave energy technologies and the necessary power-equipment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 413-434.
    16. Madariaga, A. & Martín, J.L. & Zamora, I. & Martínez de Alegría, I. & Ceballos, S., 2013. "Technological trends in electric topologies for offshore wind power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 32-44.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:13:y:2009:i:5:p:1027-1038. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.