IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v102y2019icp171-185.html
   My bibliography  Save this article

Comparative analysis of European grid codes relevant to offshore renewable energy installations

Author

Listed:
  • Robles, Eider
  • Haro-Larrode, Marta
  • Santos-Mugica, Maider
  • Etxegarai, Agurtzane
  • Tedeschi, Elisabetta

Abstract

The purpose of this paper is to highlight the most demanding aspects of grid interconnection of marine energy installations while at the same time providing an updated overview and comparative analysis of the connection requirements of eight European Grid Codes. Therefore, the major issues related to marine energy installations will be summarized as well as the requirements of this type of generation. Besides, the extent to which current Grid Codes include marine energy technologies will be analysed jointly with the need of harmonization of different Grid Codes into a generalised European grid code. Apart from this, several future trends of marine energy technology and its interconnection will be provided for the final discussion.

Suggested Citation

  • Robles, Eider & Haro-Larrode, Marta & Santos-Mugica, Maider & Etxegarai, Agurtzane & Tedeschi, Elisabetta, 2019. "Comparative analysis of European grid codes relevant to offshore renewable energy installations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 171-185.
  • Handle: RePEc:eee:rensus:v:102:y:2019:i:c:p:171-185
    DOI: 10.1016/j.rser.2018.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118307962
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lisboa, Rodrigo C. & Teixeira, Paulo R.F. & Torres, Fernando R. & Didier, Eric, 2018. "Numerical evaluation of the power output of an oscillating water column wave energy converter installed in the southern Brazilian coast," Energy, Elsevier, vol. 162(C), pages 1115-1124.
    2. Zhang, Xiantao & Tian, Xinliang & Xiao, Longfei & Li, Xin & Chen, Lifen, 2018. "Application of an adaptive bistable power capture mechanism to a point absorber wave energy converter," Applied Energy, Elsevier, vol. 228(C), pages 450-467.
    3. Díaz-González, Francisco & Hau, Melanie & Sumper, Andreas & Gomis-Bellmunt, Oriol, 2014. "Participation of wind power plants in system frequency control: Review of grid code requirements and control methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 551-564.
    4. Mohseni, Mansour & Islam, Syed M., 2012. "Review of international grid codes for wind power integration: Diversity, technology and a case for global standard," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3876-3890.
    5. Wang, Liguo & Isberg, Jan & Tedeschi, Elisabetta, 2018. "Review of control strategies for wave energy conversion systems and their validation: the wave-to-wire approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 366-379.
    6. Mérigaud, Alexis & Ringwood, John V., 2016. "Condition-based maintenance methods for marine renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 53-78.
    7. Rodrigues, E.M.G. & Osório, G.J. & Godina, R. & Bizuayehu, A.W. & Lujano-Rojas, J.M. & Catalão, J.P.S., 2016. "Grid code reinforcements for deeper renewable generation in insular energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 163-177.
    8. de Alegría, Iñigo Martinez & Andreu, Jon & Martín, José Luis & Ibañez, Pedro & Villate, José Luis & Camblong, Haritza, 2007. "Connection requirements for wind farms: A survey on technical requierements and regulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1858-1872, October.
    9. Georgilakis, Pavlos S., 2008. "Technical challenges associated with the integration of wind power into power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 852-863, April.
    10. Kofoed, Jens Peter & Frigaard, Peter & Friis-Madsen, Erik & Sørensen, Hans Chr., 2006. "Prototype testing of the wave energy converter wave dragon," Renewable Energy, Elsevier, vol. 31(2), pages 181-189.
    11. Gunn, Kester & Stock-Williams, Clym, 2012. "Quantifying the global wave power resource," Renewable Energy, Elsevier, vol. 44(C), pages 296-304.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin Pilarczyk & Bohdan Węglowski & Lars O. Nord, 2019. "A Comprehensive Thermal and Structural Transient Analysis of a Boiler’s Steam Outlet Header by Means of a Dedicated Algorithm and FEM Simulation," Energies, MDPI, Open Access Journal, vol. 13(1), pages 1-1, December.
    2. Alexis B. Rey-Boué & N. F. Guerrero-Rodríguez & Johannes Stöckl & Thomas I. Strasser, 2019. "Modeling and Design of the Vector Control for a Three-Phase Single-Stage Grid-Connected PV System with LVRT Capability according to the Spanish Grid Code," Energies, MDPI, Open Access Journal, vol. 12(15), pages 1-1, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:102:y:2019:i:c:p:171-185. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.