Multi-fidelity surrogate modeling of nonlinear dynamic responses in wave energy farms
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2024.125011
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ropero-Giralda, Pablo & Crespo, Alejandro J.C. & Tagliafierro, Bonaventura & Altomare, Corrado & Domínguez, José M. & Gómez-Gesteira, Moncho & Viccione, Giacomo, 2020. "Efficiency and survivability analysis of a point-absorber wave energy converter using DualSPHysics," Renewable Energy, Elsevier, vol. 162(C), pages 1763-1776.
- Seyed Milad Mousavi & Majid Ghasemi & Mahsa Dehghan Manshadi & Amir Mosavi, 2021. "Deep Learning for Wave Energy Converter Modeling Using Long Short-Term Memory," Mathematics, MDPI, vol. 9(8), pages 1-16, April.
- Reguero, B.G. & Losada, I.J. & Méndez, F.J., 2015. "A global wave power resource and its seasonal, interannual and long-term variability," Applied Energy, Elsevier, vol. 148(C), pages 366-380.
- Gubesch, Eric & Sergiienko, Nataliia Y. & Nader, Jean-Roch & Ding, Boyin & Cazzolato, Benjamin & Penesis, Irene & Li, Ye, 2023. "Experimental investigation of a co-located wind and wave energy system in regular waves," Renewable Energy, Elsevier, vol. 219(P2).
- Simon Thomas & Marianna Giassi & Malin Göteman & Martyn Hann & Edward Ransley & Jan Isberg & Jens Engström, 2018. "Performance of a Direct-Driven Wave Energy Point Absorber with High Inertia Rotatory Power Take-off," Energies, MDPI, vol. 11(9), pages 1-17, September.
- Faedo, Nicolás & Peña-Sanchez, Yerai & Pasta, Edoardo & Papini, Guglielmo & Mosquera, Facundo D. & Ferri, Francesco, 2023. "SWELL: An open-access experimental dataset for arrays of wave energy conversion systems," Renewable Energy, Elsevier, vol. 212(C), pages 699-716.
- Quartier, Nicolas & Vervaet, Timothy & Fernandez, Gael Verao & Domínguez, José M. & Crespo, Alejandro J.C. & Stratigaki, Vasiliki & Troch, Peter, 2024. "High-fidelity numerical modelling of a two-WEC array with accurate implementation of the PTO system and control strategy using DualSPHysics," Energy, Elsevier, vol. 296(C).
- Babarit, A., 2013. "On the park effect in arrays of oscillating wave energy converters," Renewable Energy, Elsevier, vol. 58(C), pages 68-78.
- Castro-Santos, Laura & Filgueira-Vizoso, Almudena & Costoya, Xurxo & Arguilé-Pérez, Beatriz & Ribeiro, Américo Soares, 2024. "Economic viability of floating wave power farms considering the energy generated in the near future," Renewable Energy, Elsevier, vol. 222(C).
- Wang, Liguo & Isberg, Jan & Tedeschi, Elisabetta, 2018. "Review of control strategies for wave energy conversion systems and their validation: the wave-to-wire approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 366-379.
- Stavropoulou, Charitini & Goude, Anders & Katsidoniotaki, Eirini & Göteman, Malin, 2023. "Fast time-domain model for the preliminary design of a wave power farm," Renewable Energy, Elsevier, vol. 219(P2).
- Penalba, Markel & Ringwood, John V., 2019. "A high-fidelity wave-to-wire model for wave energy converters," Renewable Energy, Elsevier, vol. 134(C), pages 367-378.
- Jonasson, Erik & Fjellstedt, Christoffer & Temiz, Irina, 2024. "Grid impact of co-located offshore renewable energy sources," Renewable Energy, Elsevier, vol. 230(C).
- Gunn, Kester & Stock-Williams, Clym, 2012. "Quantifying the global wave power resource," Renewable Energy, Elsevier, vol. 44(C), pages 296-304.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Capasso, Salvatore & Tagliafierro, Bonaventura & Martínez-Estévez, Iván & Altomare, Corrado & Gómez-Gesteira, Moncho & Göteman, Malin & Viccione, Giacomo, 2025. "Development of an SPH-based numerical wave–current tank and application to wave energy converters," Applied Energy, Elsevier, vol. 377(PB).
- Xiaohui Zeng & Qi Wang & Yuanshun Kang & Fajun Yu, 2022. "A Novel Type of Wave Energy Converter with Five Degrees of Freedom and Preliminary Investigations on Power-Generating Capacity," Energies, MDPI, vol. 15(9), pages 1-20, April.
- Faedo, Nicolás & Peña-Sanchez, Yerai & Pasta, Edoardo & Papini, Guglielmo & Mosquera, Facundo D. & Ferri, Francesco, 2023. "SWELL: An open-access experimental dataset for arrays of wave energy conversion systems," Renewable Energy, Elsevier, vol. 212(C), pages 699-716.
- Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
- Domenico Curto & Vincenzo Franzitta & Andrea Guercio, 2021. "Sea Wave Energy. A Review of the Current Technologies and Perspectives," Energies, MDPI, vol. 14(20), pages 1-31, October.
- Tunde Aderinto & Hua Li, 2020. "Effect of Spatial and Temporal Resolution Data on Design and Power Capture of a Heaving Point Absorber," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
- Cuttler, Michael V.W. & Hansen, Jeff E. & Lowe, Ryan J., 2020. "Seasonal and interannual variability of the wave climate at a wave energy hotspot off the southwestern coast of Australia," Renewable Energy, Elsevier, vol. 146(C), pages 2337-2350.
- Bonovas, Markos I. & Anagnostopoulos, Ioannis S., 2020. "Modelling of operation and optimum design of a wave power take-off system with energy storage," Renewable Energy, Elsevier, vol. 147(P1), pages 502-514.
- Francisco Francisco & Jennifer Leijon & Cecilia Boström & Jens Engström & Jan Sundberg, 2018. "Wave Power as Solution for Off-Grid Water Desalination Systems: Resource Characterization for Kilifi-Kenya," Energies, MDPI, vol. 11(4), pages 1-14, April.
- Rosa-Santos, Paulo & Taveira-Pinto, Francisco & Rodríguez, Claudio A. & Ramos, Victor & López, Mario, 2019. "The CECO wave energy converter: Recent developments," Renewable Energy, Elsevier, vol. 139(C), pages 368-384.
- Jonasson, Erik & Fjellstedt, Christoffer & Temiz, Irina, 2024. "Grid impact of co-located offshore renewable energy sources," Renewable Energy, Elsevier, vol. 230(C).
- Egidijus Kasiulis & Jens Peter Kofoed & Arvydas Povilaitis & Algirdas Radzevičius, 2017. "Spatial Distribution of the Baltic Sea Near-Shore Wave Power Potential along the Coast of Klaipėda, Lithuania," Energies, MDPI, vol. 10(12), pages 1-18, December.
- Coe, Ryan G. & Bacelli, Giorgio & Forbush, Dominic, 2021. "A practical approach to wave energy modeling and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
- Guillou, Nicolas & Chapalain, Georges, 2020. "Assessment of wave power variability and exploitation with a long-term hindcast database," Renewable Energy, Elsevier, vol. 154(C), pages 1272-1282.
- Keiner, Dominik & Salcedo-Puerto, Orlando & Immonen, Ekaterina & van Sark, Wilfried G.J.H.M. & Nizam, Yoosuf & Shadiya, Fathmath & Duval, Justine & Delahaye, Timur & Gulagi, Ashish & Breyer, Christian, 2022. "Powering an island energy system by offshore floating technologies towards 100% renewables: A case for the Maldives," Applied Energy, Elsevier, vol. 308(C).
- Shi, Xueli & Li, Shaowu & Liang, Bingchen & Zhao, Jianchun & Liu, Ye & Wang, Zhenlu, 2023. "Numerical study on the impact of wave-current interaction on wave energy resource assessments in Zhoushan sea area, China," Renewable Energy, Elsevier, vol. 215(C).
- Guillou, Nicolas, 2020. "Estimating wave energy flux from significant wave height and peak period," Renewable Energy, Elsevier, vol. 155(C), pages 1383-1393.
- Roger Samsó & Júlia Crespin & Antonio García-Olivares & Jordi Solé, 2023. "Examining the Potential of Marine Renewable Energy: A Net Energy Perspective," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
- Shih-Chun Hsiao & Chao-Tzuen Cheng & Tzu-Yin Chang & Wei-Bo Chen & Han-Lun Wu & Jiun-Huei Jang & Lee-Yaw Lin, 2021. "Assessment of Offshore Wave Energy Resources in Taiwan Using Long-Term Dynamically Downscaled Winds from a Third-Generation Reanalysis Product," Energies, MDPI, vol. 14(3), pages 1-25, January.
- Webb, A. & Waseda, T. & Kiyomatsu, K., 2020. "A high-resolution, long-term wave resource assessment of Japan with wave–current effects," Renewable Energy, Elsevier, vol. 161(C), pages 1341-1358.
More about this item
Keywords
Multi-fidelity surrogate model; LSTM neural network; Wave energy farm; Point-absorber; Nonlinear dynamic responses; Real-time monitoring;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:380:y:2025:i:c:s030626192402395x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.