IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v53y2016icp163-177.html
   My bibliography  Save this article

Grid code reinforcements for deeper renewable generation in insular energy systems

Author

Listed:
  • Rodrigues, E.M.G.
  • Osório, G.J.
  • Godina, R.
  • Bizuayehu, A.W.
  • Lujano-Rojas, J.M.
  • Catalão, J.P.S.

Abstract

Introduction of renewable energy sources (RES) in insular areas is growing on different islands of various regions in the world and the large-scale deployment of renewables in island power systems is appealing to local attention of grid operators as a method to decrease fossil fuel consumption. Planning a grid based on renewable power plants (RPP) presents serious challenges to the normal operation of a power system, precisely on voltage and frequency stability. Despite of its inherent problems, there is a consensus that in near future the RES could supply most of local needs without depending exclusively on fossil fuels. In previous grid code compliance, wind turbines did not required services to support grid operation. Thus, in order to shift to large-scale integration of renewables, the insular grid code ought to incorporate a new set of requirements with the intention of regulating the inclusion of these services. Hence, this paper discusses grid code requirements for large-scale integration of renewables in an island context, as a new contribution to earlier studies. The current trends on grid code formulation, towards an improved integration of distributed renewable resources in island power systems, are addressed. The paper also discusses advanced grid code requirement concepts such as virtual wind inertia and synthetic inertia for improving regulation capability of wind farms and the application of energy storage systems (EES) for enhancing renewable generation integration. Finally, a comparative analysis of insular grid code compliance to these requirements is presented in the European context.

Suggested Citation

  • Rodrigues, E.M.G. & Osório, G.J. & Godina, R. & Bizuayehu, A.W. & Lujano-Rojas, J.M. & Catalão, J.P.S., 2016. "Grid code reinforcements for deeper renewable generation in insular energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 163-177.
  • Handle: RePEc:eee:rensus:v:53:y:2016:i:c:p:163-177
    DOI: 10.1016/j.rser.2015.08.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115009107
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koliba, Christopher & DeMenno, Mercy & Brune, Nancy & Zia, Asim, 2014. "The salience and complexity of building, regulating, and governing the smart grid: Lessons from a statewide public–private partnership," Energy Policy, Elsevier, vol. 74(C), pages 243-252.
    2. Rona, Berk & Güler, Önder, 2015. "Power system integration of wind farms and analysis of grid code requirements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 100-107.
    3. Simoglou, Christos K. & Kardakos, Evaggelos G. & Bakirtzis, Emmanouil A. & Chatzigiannis, Dimitris I. & Vagropoulos, Stylianos I. & Ntomaris, Andreas V. & Biskas, Pandelis N. & Gigantidou, Antiopi & T, 2014. "An advanced model for the efficient and reliable short-term operation of insular electricity networks with high renewable energy sources penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 415-427.
    4. de Alegría, Iñigo Martinez & Andreu, Jon & Martín, José Luis & Ibañez, Pedro & Villate, José Luis & Camblong, Haritza, 2007. "Connection requirements for wind farms: A survey on technical requierements and regulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1858-1872, October.
    5. Díaz-González, Francisco & Hau, Melanie & Sumper, Andreas & Gomis-Bellmunt, Oriol, 2014. "Participation of wind power plants in system frequency control: Review of grid code requirements and control methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 551-564.
    6. Etxegarai, Agurtzane & Eguia, Pablo & Torres, Esther & Iturregi, Araitz & Valverde, Victor, 2015. "Review of grid connection requirements for generation assets in weak power grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1501-1514.
    7. Mohseni, Mansour & Islam, Syed M., 2012. "Review of international grid codes for wind power integration: Diversity, technology and a case for global standard," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3876-3890.
    8. Mwasilu, Francis & Justo, Jackson John & Kim, Eun-Kyung & Do, Ton Duc & Jung, Jin-Woo, 2014. "Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 501-516.
    9. Papathanassiou, Stavros A. & Boulaxis, Nikos G., 2006. "Power limitations and energy yield evaluation for wind farms operating in island systems," Renewable Energy, Elsevier, vol. 31(4), pages 457-479.
    10. Rodrigues, E.M.G. & Godina, R. & Santos, S.F. & Bizuayehu, A.W. & Contreras, J. & Catalão, J.P.S., 2014. "Energy storage systems supporting increased penetration of renewables in islanded systems," Energy, Elsevier, vol. 75(C), pages 265-280.
    11. Notton, Gilles, 2015. "Importance of islands in renewable energy production and storage: The situation of the French islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 260-269.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robles, Eider & Haro-Larrode, Marta & Santos-Mugica, Maider & Etxegarai, Agurtzane & Tedeschi, Elisabetta, 2019. "Comparative analysis of European grid codes relevant to offshore renewable energy installations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 171-185.
    2. Etxegarai, Agurtzane & Eguia, Pablo & Torres, Esther & Buigues, Garikoitz & Iturregi, Araitz, 2017. "Current procedures and practices on grid code compliance verification of renewable power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 191-202.
    3. Carlos A. Platero & José A. Sánchez & Christophe Nicolet & Philippe Allenbach, 2019. "Hydropower Plants Frequency Regulation Depending on Upper Reservoir Water Level," Energies, MDPI, Open Access Journal, vol. 12(9), pages 1-1, April.
    4. Hirase, Yuko & Abe, Kensho & Sugimoto, Kazushige & Sakimoto, Kenichi & Bevrani, Hassan & Ise, Toshifumi, 2018. "A novel control approach for virtual synchronous generators to suppress frequency and voltage fluctuations in microgrids," Applied Energy, Elsevier, vol. 210(C), pages 699-710.
    5. Serban, Ioan, 2018. "A control strategy for microgrids: Seamless transfer based on a leading inverter with supercapacitor energy storage system," Applied Energy, Elsevier, vol. 221(C), pages 490-507.
    6. Yang, Chao & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Chen, Zhe & Wen, Jinyu & He, Haibo, 2019. "Dynamic event-triggered robust secondary frequency control for islanded AC microgrid," Applied Energy, Elsevier, vol. 242(C), pages 821-836.
    7. Rodrigues, E.M.G. & Godina, R. & Catalão, J.P.S., 2017. "Modelling electrochemical energy storage devices in insular power network applications supported on real data," Applied Energy, Elsevier, vol. 188(C), pages 315-329.
    8. Nubia Ilia Ponce de León Puig & Leonardo Acho & José Rodellar, 2018. "Design and Experimental Implementation of a Hysteresis Algorithm to Optimize the Maximum Power Point Extracted from a Photovoltaic System," Energies, MDPI, Open Access Journal, vol. 11(7), pages 1-1, July.
    9. Morsy Nour & José Pablo Chaves-Ávila & Gaber Magdy & Álvaro Sánchez-Miralles, 2020. "Review of Positive and Negative Impacts of Electric Vehicles Charging on Electric Power Systems," Energies, MDPI, Open Access Journal, vol. 13(18), pages 1-1, September.
    10. Loudiyi, Khalid & Berrada, Asmae & Svendsen, Harald G. & Mentesidi, Konstantina, 2018. "Grid code status for wind farms interconnection in Northern Africa and Spain: Descriptions and recommendations for Northern Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2584-2598.
    11. Papadopoulos, Agis M., 2020. "Renewable energies and storage in small insular systems: Potential, perspectives and a case study," Renewable Energy, Elsevier, vol. 149(C), pages 103-114.
    12. José Ignacio Sarasúa & Guillermo Martínez-Lucas & Carlos A. Platero & José Ángel Sánchez-Fernández, 2018. "Dual Frequency Regulation in Pumping Mode in a Wind–Hydro Isolated System," Energies, MDPI, Open Access Journal, vol. 11(11), pages 1-1, October.
    13. Dreidy, Mohammad & Mokhlis, H. & Mekhilef, Saad, 2017. "Inertia response and frequency control techniques for renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 144-155.
    14. Paris A. Fokaides & Christiana Panteli & Andri Panayidou, 2020. "How Are the Smart Readiness Indicators Expected to Affect the Energy Performance of Buildings: First Evidence and Perspectives," Sustainability, MDPI, Open Access Journal, vol. 12(22), pages 1-1, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:53:y:2016:i:c:p:163-177. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.