IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v74y2014icp243-252.html
   My bibliography  Save this article

The salience and complexity of building, regulating, and governing the smart grid: Lessons from a statewide public–private partnership

Author

Listed:
  • Koliba, Christopher
  • DeMenno, Mercy
  • Brune, Nancy
  • Zia, Asim

Abstract

Smart grid deployment unfolds within a diverse array of multi-institutional arrangements that may be too fragmented and decentralized to allow for the kind of large-scale and coordinated investments needed to properly deploy the smart grid. This case study provides an account of how one state arranged for and eventually deployed smart grid technology to over 85 percent of its resident. The study asks: does the deployment of the smart grid introduce new socio-political variables into the electricity distribution industry? To make sense of the socio-political variables shaping the industry and regulators, the Salience–Complexity Model is used to assess whether the smart grid raises or lowers the level of public scrutiny caste upon the industry (issue salience) and the level of technical capacity needed to execute and utilize the smart grid (technical complexity). The conclusions to be drawn from this study include: smart grid technology heightens the issue salience and the technical complexity of electricity distribution, but that the smart grid will likely not have a significant impact on the restructuring of electricity regulation.

Suggested Citation

  • Koliba, Christopher & DeMenno, Mercy & Brune, Nancy & Zia, Asim, 2014. "The salience and complexity of building, regulating, and governing the smart grid: Lessons from a statewide public–private partnership," Energy Policy, Elsevier, vol. 74(C), pages 243-252.
  • Handle: RePEc:eee:enepol:v:74:y:2014:i:c:p:243-252
    DOI: 10.1016/j.enpol.2014.09.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421514005047
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2014.09.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McHenry, Mark P., 2013. "Technical and governance considerations for advanced metering infrastructure/smart meters: Technology, security, uncertainty, costs, benefits, and risks," Energy Policy, Elsevier, vol. 59(C), pages 834-842.
    2. Clinton J. Andrews, 0. "Diffusion Pathways for Electricity Deregulation," Publius: The Journal of Federalism, CSF Associates Inc., vol. 30(3), pages 17-34.
    3. Agrell, Per J. & Bogetoft, Peter & Mikkers, Misja, 2013. "Smart-grid investments, regulation and organization," Energy Policy, Elsevier, vol. 52(C), pages 656-666.
    4. Krishnamurti, Tamar & Schwartz, Daniel & Davis, Alexander & Fischhoff, Baruch & de Bruin, Wändi Bruine & Lave, Lester & Wang, Jack, 2012. "Preparing for smart grid technologies: A behavioral decision research approach to understanding consumer expectations about smart meters," Energy Policy, Elsevier, vol. 41(C), pages 790-797.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aurelie Tricoire, 2015. "Uncertainty, vision, and the vitality of the emerging smart grid," Post-Print hal-02351994, HAL.
    2. Lee, Taedong & Glick, Mark B. & Lee, Jae-Hyup, 2020. "Island energy transition: Assessing Hawaii's multi-level, policy-driven approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    3. Keady, Walter & Panikkar, Bindu & Nelson, Ingrid L. & Zia, Asim, 2021. "Energy justice gaps in renewable energy transition policy initiatives in Vermont," Energy Policy, Elsevier, vol. 159(C).
    4. Rodrigues, E.M.G. & Osório, G.J. & Godina, R. & Bizuayehu, A.W. & Lujano-Rojas, J.M. & Catalão, J.P.S., 2016. "Grid code reinforcements for deeper renewable generation in insular energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 163-177.
    5. Jelena Lukić & Miloš Radenković & Marijana Despotović-Zrakić & Aleksandra Labus & Zorica Bogdanović, 2017. "Supply chain intelligence for electricity markets: A smart grid perspective," Information Systems Frontiers, Springer, vol. 19(1), pages 91-107, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    2. Chamaret, Cécile & Steyer, Véronique & Mayer, Julie C., 2020. "“Hands off my meter!” when municipalities resist smart meters: Linking arguments and degrees of resistance," Energy Policy, Elsevier, vol. 144(C).
    3. Pereira, Guillermo Ivan & Specht, Jan Martin & Silva, Patrícia Pereira & Madlener, Reinhard, 2018. "Technology, business model, and market design adaptation toward smart electricity distribution: Insights for policy making," Energy Policy, Elsevier, vol. 121(C), pages 426-440.
    4. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    5. Colak, Ilhami & Sagiroglu, Seref & Fulli, Gianluca & Yesilbudak, Mehmet & Covrig, Catalin-Felix, 2016. "A survey on the critical issues in smart grid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 396-405.
    6. Goldbach, Kristin & Rotaru, Andreea Mihaela & Reichert, Stefan & Stiff, George & Gölz, Sebastian, 2018. "Which digital energy services improve energy efficiency? A multi-criteria investigation with European experts," Energy Policy, Elsevier, vol. 115(C), pages 239-248.
    7. Chou, Jui-Sheng & Gusti Ayu Novi Yutami, I, 2014. "Smart meter adoption and deployment strategy for residential buildings in Indonesia," Applied Energy, Elsevier, vol. 128(C), pages 336-349.
    8. Hall, Stephen & Foxon, Timothy J., 2014. "Values in the Smart Grid: The co-evolving political economy of smart distribution," Energy Policy, Elsevier, vol. 74(C), pages 600-609.
    9. Pedro Longart & Eugenia Wickens & Ali Bakir, 2016. "Consumer Decision Process in Restaurant Selection: An Application of the Stylized EKB Model," Tržište/Market, Faculty of Economics and Business, University of Zagreb, vol. 28(2), pages 173-190.
    10. Coelho, Igor M. & Coelho, Vitor N. & Luz, Eduardo J. da S. & Ochi, Luiz S. & Guimarães, Frederico G. & Rios, Eyder, 2017. "A GPU deep learning metaheuristic based model for time series forecasting," Applied Energy, Elsevier, vol. 201(C), pages 412-418.
    11. Hafize Nurgul Durmus Senyapar & Ramazan Bayindir, 2023. "The Research Agenda on Smart Grids: Foresights for Social Acceptance," Energies, MDPI, vol. 16(18), pages 1-31, September.
    12. Weron, Tomasz & Kowalska-Pyzalska, Anna & Weron, Rafał, 2018. "The role of educational trainings in the diffusion of smart metering platforms: An agent-based modeling approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 591-600.
    13. Yanshan Yu & Jin Yang & Bin Chen, 2012. "The Smart Grids in China—A Review," Energies, MDPI, vol. 5(5), pages 1-18, May.
    14. McHenry, Mark P. & Doepel, David, 2015. "The ‘low power’ revolution: Rural off-grid consumer technologies and portable micropower systems in non-industrialised regions," Renewable Energy, Elsevier, vol. 78(C), pages 679-684.
    15. Agrell, Per J. & Bogetoft, Peter & Mikkers, Misja, 2013. "Smart-grid investments, regulation and organization," Energy Policy, Elsevier, vol. 52(C), pages 656-666.
    16. Tu, Gengyang & Faure, Corinne & Schleich, Joachim & Guetlein, Marie-Charlotte, 2021. "The heat is off! The role of technology attributes and individual attitudes in the diffusion of Smart thermostats – findings from a multi-country survey," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    17. Majidpour, Mostafa & Qiu, Charlie & Chu, Peter & Pota, Hemanshu R. & Gadh, Rajit, 2016. "Forecasting the EV charging load based on customer profile or station measurement?," Applied Energy, Elsevier, vol. 163(C), pages 134-141.
    18. Agrell, Per J. & Brea-Solís, Humberto, 2017. "Capturing heterogeneity in electricity distribution operations: A critical review of latent class modelling," Energy Policy, Elsevier, vol. 104(C), pages 361-372.
    19. Ilaria Vigna & Jessica Balest & Wilmer Pasut & Roberta Pernetti, 2020. "Office Occupants’ Perspective Dealing with Energy Flexibility: A Large-Scale Survey in the Province of Bolzano," Energies, MDPI, vol. 13(17), pages 1-20, August.
    20. Milchram, Christine & Hillerbrand, Rafaela & van de Kaa, Geerten & Doorn, Neelke & Künneke, Rolf, 2018. "Energy Justice and Smart Grid Systems: Evidence from the Netherlands and the United Kingdom," Applied Energy, Elsevier, vol. 229(C), pages 1244-1259.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:74:y:2014:i:c:p:243-252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.