IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v221y2018icp490-507.html
   My bibliography  Save this article

A control strategy for microgrids: Seamless transfer based on a leading inverter with supercapacitor energy storage system

Author

Listed:
  • Serban, Ioan

Abstract

In the current paper, an improved control strategy designed for synchronizing and transferring autonomous microgrids (MGs) to the grid is presented. The proposed approach is based on an MG leading inverter (MGLI) supplied by a supercapacitor energy storage system, which takes over the MG only during a transitory load and distributes it to the available MG supporting inverters (MGSIs). This paper presents the control systems for both the proposed MGLI and the associated MGSIs, the focus being on the specific issues related to MG synchronization and grid transfer. By means of the proposed solution, the operation of the MG and its transition between autonomous and grid-connected modes require merely the adaptation of the MGLI control system, while the MGSIs operation remain unchanged during all MG states. The comprehensive experimental results, which were carried out on a laboratory-scale MG, have shown that the system is kept stable and with minimum disturbance to the local MG voltage and frequency during the analysed events, namely the scheduled MG transfer to the grid, power-flow control during grid-connection operation, and disconnection from the grid, respectively.

Suggested Citation

  • Serban, Ioan, 2018. "A control strategy for microgrids: Seamless transfer based on a leading inverter with supercapacitor energy storage system," Applied Energy, Elsevier, vol. 221(C), pages 490-507.
  • Handle: RePEc:eee:appene:v:221:y:2018:i:c:p:490-507
    DOI: 10.1016/j.apenergy.2018.03.122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918304604
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.03.122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rodrigues, E.M.G. & Osório, G.J. & Godina, R. & Bizuayehu, A.W. & Lujano-Rojas, J.M. & Catalão, J.P.S., 2016. "Grid code reinforcements for deeper renewable generation in insular energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 163-177.
    2. Dreidy, Mohammad & Mokhlis, H. & Mekhilef, Saad, 2017. "Inertia response and frequency control techniques for renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 144-155.
    3. Hirase, Yuko & Abe, Kensho & Sugimoto, Kazushige & Sakimoto, Kenichi & Bevrani, Hassan & Ise, Toshifumi, 2018. "A novel control approach for virtual synchronous generators to suppress frequency and voltage fluctuations in microgrids," Applied Energy, Elsevier, vol. 210(C), pages 699-710.
    4. Lidula, N.W.A. & Rajapakse, A.D., 2014. "Voltage balancing and synchronization of microgrids with highly unbalanced loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 907-920.
    5. Iychettira, Kaveri K. & Hakvoort, Rudi A. & Linares, Pedro & de Jeu, Rob, 2017. "Towards a comprehensive policy for electricity from renewable energy: Designing for social welfare," Applied Energy, Elsevier, vol. 187(C), pages 228-242.
    6. Amin, Md. Ruhul & Aizam Zulkifli, Shamsul, 2017. "A framework for selection of grid-inverter synchronisation unit: Harmonics, phase-angle and frequency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 210-219.
    7. Iychettira, Kaveri K. & Hakvoort, Rudi A. & Linares, Pedro, 2017. "Towards a comprehensive policy for electricity from renewable energy: An approach for policy design," Energy Policy, Elsevier, vol. 106(C), pages 169-182.
    8. Bouzid, Allal M. & Guerrero, Josep M. & Cheriti, Ahmed & Bouhamida, Mohamed & Sicard, Pierre & Benghanem, Mustapha, 2015. "A survey on control of electric power distributed generation systems for microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 751-766.
    9. Andishgar, Mohammad Hadi & Gholipour, Eskandar & Hooshmand, Rahmat-allah, 2017. "An overview of control approaches of inverter-based microgrids in islanding mode of operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1043-1060.
    10. Zehir, Mustafa Alparslan & Batman, Alp & Sonmez, Mehmet Ali & Font, Aytug & Tsiamitros, Dimitrios & Stimoniaris, Dimitris & Kollatou, Theofano & Bagriyanik, Mustafa & Ozdemir, Aydogan & Dialynas, Evan, 2017. "Impacts of microgrids with renewables on secondary distribution networks," Applied Energy, Elsevier, vol. 201(C), pages 308-319.
    11. Shuai, Zhikang & Sun, Yingyun & Shen, Z. John & Tian, Wei & Tu, Chunming & Li, Yan & Yin, Xin, 2016. "Microgrid stability: Classification and a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 167-179.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Chao & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Chen, Zhe & Wen, Jinyu & He, Haibo, 2019. "Dynamic event-triggered robust secondary frequency control for islanded AC microgrid," Applied Energy, Elsevier, vol. 242(C), pages 821-836.
    2. Guido Cavraro & Tommaso Caldognetto & Ruggero Carli & Paolo Tenti, 2019. "A Master/Slave Approach to Power Flow and Overvoltage Control in Low-Voltage Microgrids," Energies, MDPI, vol. 12(14), pages 1-22, July.
    3. Brandao, Danilo I. & de Araújo, Lucas S. & Caldognetto, Tommaso & Pomilio, José A., 2018. "Coordinated control of three- and single-phase inverters coexisting in low-voltage microgrids," Applied Energy, Elsevier, vol. 228(C), pages 2050-2060.
    4. Haifeng Liang & Yue Dong & Yuxi Huang & Can Zheng & Peng Li, 2018. "Modeling of Multiple Master–Slave Control under Island Microgrid and Stability Analysis Based on Control Parameter Configuration," Energies, MDPI, vol. 11(9), pages 1-18, August.
    5. Yang, Bo & Wang, Jingbo & Sang, Yiyan & Yu, Lei & Shu, Hongchun & Li, Shengnan & He, Tingyi & Yang, Lei & Zhang, Xiaoshun & Yu, Tao, 2019. "Applications of supercapacitor energy storage systems in microgrid with distributed generators via passive fractional-order sliding-mode control," Energy, Elsevier, vol. 187(C).
    6. Yuan, Minghan & Fu, Yang & Mi, Yang & Li, Zhenkun & Wang, Chengshan, 2019. "Hierarchical control of DC microgrid with dynamical load power sharing," Applied Energy, Elsevier, vol. 239(C), pages 1-11.
    7. Mi, Yang & Chen, Xin & Ji, Hongpeng & Ji, Liang & Fu, Yang & Wang, Chengshan & Wang, Jianhui, 2019. "The coordinated control strategy for isolated DC microgrid based on adaptive storage adjustment without communication," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    8. dos Santos Neto, Pedro J. & Barros, Tárcio A.S. & Silveira, Joao P.C. & Ruppert Filho, Ernesto & Vasquez, Juan C. & Guerrero, Josep M., 2020. "Power management techniques for grid-connected DC microgrids: A comparative evaluation," Applied Energy, Elsevier, vol. 269(C).
    9. Xiangqiang Wu & Tamas Kerekes, 2021. "Flexible Active Power Control for PV-ESS Systems: A Review," Energies, MDPI, vol. 14(21), pages 1-25, November.
    10. Haris, Muhammad & Hasan, Muhammad Noman & Qin, Shiyin, 2021. "Early and robust remaining useful life prediction of supercapacitors using BOHB optimized Deep Belief Network," Applied Energy, Elsevier, vol. 286(C).
    11. Catalin Petrea Ion & Ioan Serban, 2019. "Seamless Integration of an Autonomous Induction Generator System into an Inverter-Based Microgrid," Energies, MDPI, vol. 12(4), pages 1-18, February.
    12. Alessandro Burgio & Daniele Menniti & Nicola Sorrentino & Anna Pinnarelli & Zbigniew Leonowicz, 2020. "Influence and Impact of Data Averaging and Temporal Resolution on the Assessment of Energetic, Economic and Technical Issues of Hybrid Photovoltaic-Battery Systems," Energies, MDPI, vol. 13(2), pages 1-26, January.
    13. López-Alcolea, Francisco Javier & Molina-Martínez, Emilio J. & Parreño Torres, Alfonso & Vázquez, Javier & Roncero-Sánchez, Pedro, 2023. "2DOF-based current controller for single-phase grid-connected voltage source inverter applications," Applied Energy, Elsevier, vol. 342(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Labella & Filip Filipovic & Milutin Petronijevic & Andrea Bonfiglio & Renato Procopio, 2020. "An MPC Approach for Grid-Forming Inverters: Theory and Experiment," Energies, MDPI, vol. 13(9), pages 1-17, May.
    2. Yang, Chao & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Chen, Zhe & Wen, Jinyu & He, Haibo, 2019. "Dynamic event-triggered robust secondary frequency control for islanded AC microgrid," Applied Energy, Elsevier, vol. 242(C), pages 821-836.
    3. Li, Wei & Lu, Can & Zhang, Yan-Wu, 2019. "Prospective exploration of future renewable portfolio standard schemes in China via a multi-sector CGE model," Energy Policy, Elsevier, vol. 128(C), pages 45-56.
    4. Niamir, Leila & Filatova, Tatiana & Voinov, Alexey & Bressers, Hans, 2018. "Transition to low-carbon economy: Assessing cumulative impacts of individual behavioral changes," Energy Policy, Elsevier, vol. 118(C), pages 325-345.
    5. Hirase, Yuko & Abe, Kensho & Sugimoto, Kazushige & Sakimoto, Kenichi & Bevrani, Hassan & Ise, Toshifumi, 2018. "A novel control approach for virtual synchronous generators to suppress frequency and voltage fluctuations in microgrids," Applied Energy, Elsevier, vol. 210(C), pages 699-710.
    6. Zhang, Pengpeng & Zhang, Lixiao & Tian, Xin & Hao, Yan & Wang, Changbo, 2018. "Urban energy transition in China: Insights from trends, socioeconomic drivers, and environmental impacts of Beijing," Energy Policy, Elsevier, vol. 117(C), pages 173-183.
    7. Savelli, Iacopo & Cornélusse, Bertrand & Giannitrapani, Antonio & Paoletti, Simone & Vicino, Antonio, 2018. "A new approach to electricity market clearing with uniform purchase price and curtailable block orders," Applied Energy, Elsevier, vol. 226(C), pages 618-630.
    8. Rodríguez-Huerta, Edgar & Rosas-Casals, Martí & Sorman, Alevgul H., 2017. "A societal metabolism approach to job creation and renewable energy transitions in Catalonia," Energy Policy, Elsevier, vol. 108(C), pages 551-564.
    9. Nguyen, Ly & Kinnucan, Henry W., 2019. "The US solar panel anti-dumping duties versus uniform tariff," Energy Policy, Elsevier, vol. 127(C), pages 523-532.
    10. Grashof, Katherina, 2019. "Are auctions likely to deter community wind projects? And would this be problematic?," Energy Policy, Elsevier, vol. 125(C), pages 20-32.
    11. Vazquez, Miguel & Hallack, Michelle, 2018. "The role of regulatory learning in energy transition: The case of solar PV in Brazil," Energy Policy, Elsevier, vol. 114(C), pages 465-481.
    12. Hirase, Y. & Noro, O. & Nakagawa, H. & Yoshimura, E. & Katsura, S. & Abe, K. & Sugimoto, K. & Sakimoto, K., 2018. "Decentralised and interlink-less power interchange among residences in microgrids using virtual synchronous generator control," Applied Energy, Elsevier, vol. 228(C), pages 2437-2447.
    13. Niesten, Eva & Jolink, Albert & Chappin, Maryse, 2018. "Investments in the Dutch onshore wind energy industry: A review of investor profiles and the impact of renewable energy subsidies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2519-2525.
    14. Anatolitis, Vasilios & Welisch, Marijke, 2017. "Putting renewable energy auctions into action – An agent-based model of onshore wind power auctions in Germany," Energy Policy, Elsevier, vol. 110(C), pages 394-402.
    15. Khan, Agha Salman M. & Verzijlbergh, Remco A. & Sakinci, Ozgur Can & De Vries, Laurens J., 2018. "How do demand response and electrical energy storage affect (the need for) a capacity market?," Applied Energy, Elsevier, vol. 214(C), pages 39-62.
    16. Voulis, Nina & van Etten, Max J.J. & Chappin, Émile J.L. & Warnier, Martijn & Brazier, Frances M.T., 2019. "Rethinking European energy taxation to incentivise consumer demand response participation," Energy Policy, Elsevier, vol. 124(C), pages 156-168.
    17. Noussan, Michel & Jarre, Matteo & Roberto, Roberta & Russolillo, Daniele, 2018. "Combined vs separate heat and power production – Primary energy comparison in high renewable share contexts," Applied Energy, Elsevier, vol. 213(C), pages 1-10.
    18. Glismann, Samuel, 2021. "Ancillary Services Acquisition Model: Considering market interactions in policy design," Applied Energy, Elsevier, vol. 304(C).
    19. Ahmad, Tanveer & Zhang, Dongdong, 2021. "Renewable energy integration/techno-economic feasibility analysis, cost/benefit impact on islanded and grid-connected operations: A case study," Renewable Energy, Elsevier, vol. 180(C), pages 83-108.
    20. Rosini, A. & Labella, A. & Bonfiglio, A. & Procopio, R. & Guerrero, Josep M., 2021. "A review of reactive power sharing control techniques for islanded microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:221:y:2018:i:c:p:490-507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.