IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v161y2018icp172-182.html
   My bibliography  Save this article

Positive interactions between electric vehicles and renewable energy sources in CO2-reduced energy scenarios: The Italian case

Author

Listed:
  • Bellocchi, Sara
  • Gambini, Marco
  • Manno, Michele
  • Stilo, Tommaso
  • Vellini, Michela

Abstract

Electric vehicles are progressively emerging in the light-duty passenger market as a promising alternative to oil-dependent road transport in the attempt to reduce greenhouse gas and pollutant emissions. However, it is necessary to investigate how a significant penetration of electric vehicles in the private transport fleet would affect the strategic planning of large scale energy systems.

Suggested Citation

  • Bellocchi, Sara & Gambini, Marco & Manno, Michele & Stilo, Tommaso & Vellini, Michela, 2018. "Positive interactions between electric vehicles and renewable energy sources in CO2-reduced energy scenarios: The Italian case," Energy, Elsevier, vol. 161(C), pages 172-182.
  • Handle: RePEc:eee:energy:v:161:y:2018:i:c:p:172-182
    DOI: 10.1016/j.energy.2018.07.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218313653
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.07.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    2. Lund, Henrik & Kempton, Willett, 2008. "Integration of renewable energy into the transport and electricity sectors through V2G," Energy Policy, Elsevier, vol. 36(9), pages 3578-3587, September.
    3. Franco, Alessandro & Salza, Pasquale, 2011. "Strategies for optimal penetration of intermittent renewables in complex energy systems based on techno-operational objectives," Renewable Energy, Elsevier, vol. 36(2), pages 743-753.
    4. Rodrigues, E.M.G. & Godina, R. & Santos, S.F. & Bizuayehu, A.W. & Contreras, J. & Catalão, J.P.S., 2014. "Energy storage systems supporting increased penetration of renewables in islanded systems," Energy, Elsevier, vol. 75(C), pages 265-280.
    5. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    6. Auer, Hans & Haas, Reinhard, 2016. "On integrating large shares of variable renewables into the electricity system," Energy, Elsevier, vol. 115(P3), pages 1592-1601.
    7. Komiyama, Ryoichi & Otsuki, Takashi & Fujii, Yasumasa, 2015. "Energy modeling and analysis for optimal grid integration of large-scale variable renewables using hydrogen storage in Japan," Energy, Elsevier, vol. 81(C), pages 537-555.
    8. Perujo, Adolfo & Ciuffo, Biagio, 2010. "The introduction of electric vehicles in the private fleet: Potential impact on the electric supply system and on the environment. A case study for the Province of Milan, Italy," Energy Policy, Elsevier, vol. 38(8), pages 4549-4561, August.
    9. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2011. "The first step towards a 100% renewable energy-system for Ireland," Applied Energy, Elsevier, vol. 88(2), pages 502-507, February.
    10. Cerdeira Bento, João Paulo & Moutinho, Victor, 2016. "CO2 emissions, non-renewable and renewable electricity production, economic growth, and international trade in Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 142-155.
    11. Mwasilu, Francis & Justo, Jackson John & Kim, Eun-Kyung & Do, Ton Duc & Jung, Jin-Woo, 2014. "Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 501-516.
    12. Clò, Stefano & Cataldi, Alessandra & Zoppoli, Pietro, 2015. "The merit-order effect in the Italian power market: The impact of solar and wind generation on national wholesale electricity prices," Energy Policy, Elsevier, vol. 77(C), pages 79-88.
    13. Batas Bjelić, Ilija & Rajaković, Nikola & Ćosić, Boris & Duić, Neven, 2013. "Increasing wind power penetration into the existing Serbian energy system," Energy, Elsevier, vol. 57(C), pages 30-37.
    14. Jaunky, Vishal Chandr, 2011. "The CO2 emissions-income nexus: Evidence from rich countries," Energy Policy, Elsevier, vol. 39(3), pages 1228-1240, March.
    15. Rintamäki, Tuomas & Siddiqui, Afzal S. & Salo, Ahti, 2016. "How much is enough? Optimal support payments in a renewable-rich power system," Energy, Elsevier, vol. 117(P1), pages 300-313.
    16. Gils, Hans Christian & Scholz, Yvonne & Pregger, Thomas & Luca de Tena, Diego & Heide, Dominik, 2017. "Integrated modelling of variable renewable energy-based power supply in Europe," Energy, Elsevier, vol. 123(C), pages 173-188.
    17. Aliprandi, F. & Stoppato, A. & Mirandola, A., 2016. "Estimating CO2 emissions reduction from renewable energy use in Italy," Renewable Energy, Elsevier, vol. 96(PA), pages 220-232.
    18. Dominković, D.F. & Bačeković, I. & Ćosić, B. & Krajačić, G. & Pukšec, T. & Duić, N. & Markovska, N., 2016. "Zero carbon energy system of South East Europe in 2050," Applied Energy, Elsevier, vol. 184(C), pages 1517-1528.
    19. Eichman, Joshua D. & Mueller, Fabian & Tarroja, Brian & Schell, Lori Smith & Samuelsen, Scott, 2013. "Exploration of the integration of renewable resources into California's electric system using the Holistic Grid Resource Integration and Deployment (HiGRID) tool," Energy, Elsevier, vol. 50(C), pages 353-363.
    20. Komušanac, Ivan & Ćosić, Boris & Duić, Neven, 2016. "Impact of high penetration of wind and solar PV generation on the country power system load: The case study of Croatia," Applied Energy, Elsevier, vol. 184(C), pages 1470-1482.
    21. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    22. Schill, Wolf-Peter & Gerbaulet, Clemens, 2015. "Power System Impacts of Electric Vehicles in Germany: Charging with Coal or Renewables," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 156, pages 185-196.
    23. Sadorsky, Perry, 2014. "The effect of urbanization on CO2 emissions in emerging economies," Energy Economics, Elsevier, vol. 41(C), pages 147-153.
    24. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2014. "Short-term electricity planning with increase wind capacity," Energy, Elsevier, vol. 69(C), pages 12-22.
    25. Antonelli, Marco & Desideri, Umberto & Franco, Alessandro, 2018. "Effects of large scale penetration of renewables: The Italian case in the years 2008–2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3090-3100.
    26. Prina, Matteo Giacomo & Cozzini, Marco & Garegnani, Giulia & Manzolini, Giampaolo & Moser, David & Filippi Oberegger, Ulrich & Pernetti, Roberta & Vaccaro, Roberto & Sparber, Wolfram, 2018. "Multi-objective optimization algorithm coupled to EnergyPLAN software: The EPLANopt model," Energy, Elsevier, vol. 149(C), pages 213-221.
    27. Gullì, Francesco & Balbo, Antonio Lo, 2015. "The impact of intermittently renewable energy on Italian wholesale electricity prices: Additional benefits or additional costs?," Energy Policy, Elsevier, vol. 83(C), pages 123-137.
    28. Salah, Florian & Ilg, Jens P. & Flath, Christoph M. & Basse, Hauke & Dinther, Clemens van, 2015. "Impact of electric vehicles on distribution substations: A Swiss case study," Applied Energy, Elsevier, vol. 137(C), pages 88-96.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    3. Lopez, Gabriel & Aghahosseini, Arman & Child, Michael & Khalili, Siavash & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    4. Md. Nasimul Islam Maruf, 2019. "Sector Coupling in the North Sea Region—A Review on the Energy System Modelling Perspective," Energies, MDPI, vol. 12(22), pages 1-35, November.
    5. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    6. Alves, M. & Segurado, R. & Costa, M., 2020. "On the road to 100% renewable energy systems in isolated islands," Energy, Elsevier, vol. 198(C).
    7. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    9. Le, Ngoc Anh & Bhattacharyya, Subhes C., 2011. "Integration of wind power into the British system in 2020," Energy, Elsevier, vol. 36(10), pages 5975-5983.
    10. Finke, Jonas & Bertsch, Valentin, 2022. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," MPRA Paper 115504, University Library of Munich, Germany.
    11. Bačeković, Ivan & Østergaard, Poul Alberg, 2018. "Local smart energy systems and cross-system integration," Energy, Elsevier, vol. 151(C), pages 812-825.
    12. Cabrera, Pedro & Lund, Henrik & Carta, José A., 2018. "Smart renewable energy penetration strategies on islands: The case of Gran Canaria," Energy, Elsevier, vol. 162(C), pages 421-443.
    13. Francesco Calise & Massimo Dentice D’Accadia & Carlo Barletta & Vittoria Battaglia & Antun Pfeifer & Neven Duic, 2017. "Detailed Modelling of the Deep Decarbonisation Scenarios with Demand Response Technologies in the Heating and Cooling Sector: A Case Study for Italy," Energies, MDPI, vol. 10(10), pages 1-33, October.
    14. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    15. Hrnčić, Boris & Pfeifer, Antun & Jurić, Filip & Duić, Neven & Ivanović, Vladan & Vušanović, Igor, 2021. "Different investment dynamics in energy transition towards a 100% renewable energy system," Energy, Elsevier, vol. 237(C).
    16. Finke, Jonas & Bertsch, Valentin, 2023. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," Applied Energy, Elsevier, vol. 332(C).
    17. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    18. Doepfert, Markus & Castro, Rui, 2021. "Techno-economic optimization of a 100% renewable energy system in 2050 for countries with high shares of hydropower: The case of Portugal," Renewable Energy, Elsevier, vol. 165(P1), pages 491-503.
    19. Prina, Matteo Giacomo & Fanali, Lorenzo & Manzolini, Giampaolo & Moser, David & Sparber, Wolfram, 2018. "Incorporating combined cycle gas turbine flexibility constraints and additional costs into the EPLANopt model: The Italian case study," Energy, Elsevier, vol. 160(C), pages 33-43.
    20. Assembayeva, Makpal & Egerer, Jonas & Mendelevitch, Roman & Zhakiyev, Nurkhat, 2018. "A spatial electricity market model for the power system: The Kazakhstan case study," Energy, Elsevier, vol. 149(C), pages 762-778.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:161:y:2018:i:c:p:172-182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.