IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v71y2017icp191-202.html
   My bibliography  Save this article

Current procedures and practices on grid code compliance verification of renewable power generation

Author

Listed:
  • Etxegarai, Agurtzane
  • Eguia, Pablo
  • Torres, Esther
  • Buigues, Garikoitz
  • Iturregi, Araitz

Abstract

Generation assets applying for grid connection must comply with certain grid code requirements. Grid code compliance verification shall include revision of documentation covering technical data and models, checking of requested capabilities, and validation of model performance. These procedures are singular regarding renewable power generation, due to their technical characteristics, specific topologies and short experience. This paper aims to carry out an updated review of the international regulations and current practices regarding the verification and certification of the electrical performance in renewable generation systems. Grid code compliance can be verified by practical tests or by simulation of validated models. Therefore, this paper also encompasses modelling and validation requirements, highlighting challenges caused by current procedures.

Suggested Citation

  • Etxegarai, Agurtzane & Eguia, Pablo & Torres, Esther & Buigues, Garikoitz & Iturregi, Araitz, 2017. "Current procedures and practices on grid code compliance verification of renewable power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 191-202.
  • Handle: RePEc:eee:rensus:v:71:y:2017:i:c:p:191-202
    DOI: 10.1016/j.rser.2016.12.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116310978
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Díaz-González, Francisco & Hau, Melanie & Sumper, Andreas & Gomis-Bellmunt, Oriol, 2014. "Participation of wind power plants in system frequency control: Review of grid code requirements and control methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 551-564.
    2. Veganzones, C. & Sanchez, J.A. & Martinez, S. & Platero, C.A. & Blazquez, F. & Ramirez, D. & Arribas, J.R. & Merino, J. & Herrero, N. & Gordillo, F., 2011. "Voltage dip generator for testing wind turbines connected to electrical networks," Renewable Energy, Elsevier, vol. 36(5), pages 1588-1594.
    3. Etxegarai, Agurtzane & Eguia, Pablo & Torres, Esther & Iturregi, Araitz & Valverde, Victor, 2015. "Review of grid connection requirements for generation assets in weak power grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1501-1514.
    4. Rodrigues, E.M.G. & Osório, G.J. & Godina, R. & Bizuayehu, A.W. & Lujano-Rojas, J.M. & Catalão, J.P.S., 2016. "Grid code reinforcements for deeper renewable generation in insular energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 163-177.
    5. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    6. Patsalides, Minas & Efthymiou, Venizelos & Stavrou, Andreas & Georghiou, George E., 2016. "A generic transient PV system model for power quality studies," Renewable Energy, Elsevier, vol. 89(C), pages 526-542.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xing Luo & Jihong Wang & Jacek D. Wojcik & Jianguo Wang & Decai Li & Mihai Draganescu & Yaowang Li & Shihong Miao, 2018. "Review of Voltage and Frequency Grid Code Specifications for Electrical Energy Storage Applications," Energies, MDPI, Open Access Journal, vol. 11(5), pages 1-26, April.
    2. Alexis B. Rey-Boué & N. F. Guerrero-Rodríguez & Johannes Stöckl & Thomas I. Strasser, 2019. "Modeling and Design of the Vector Control for a Three-Phase Single-Stage Grid-Connected PV System with LVRT Capability according to the Spanish Grid Code," Energies, MDPI, Open Access Journal, vol. 12(15), pages 1-28, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dreidy, Mohammad & Mokhlis, H. & Mekhilef, Saad, 2017. "Inertia response and frequency control techniques for renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 144-155.
    2. Nubia Ilia Ponce de León Puig & Leonardo Acho & José Rodellar, 2018. "Design and Experimental Implementation of a Hysteresis Algorithm to Optimize the Maximum Power Point Extracted from a Photovoltaic System," Energies, MDPI, Open Access Journal, vol. 11(7), pages 1-24, July.
    3. Susanto, Julius & Shahnia, Farhad & Ludwig, David, 2018. "A framework to technically evaluate integration of utility-scale photovoltaic plants to weak power distribution systems," Applied Energy, Elsevier, vol. 231(C), pages 207-221.
    4. Robles, Eider & Haro-Larrode, Marta & Santos-Mugica, Maider & Etxegarai, Agurtzane & Tedeschi, Elisabetta, 2019. "Comparative analysis of European grid codes relevant to offshore renewable energy installations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 171-185.
    5. Ruddy, Jonathan & Meere, Ronan & O’Donnell, Terence, 2016. "Low Frequency AC transmission for offshore wind power: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 75-86.
    6. Morsy Nour & José Pablo Chaves-Ávila & Gaber Magdy & Álvaro Sánchez-Miralles, 2020. "Review of Positive and Negative Impacts of Electric Vehicles Charging on Electric Power Systems," Energies, MDPI, Open Access Journal, vol. 13(18), pages 1-34, September.
    7. Loudiyi, Khalid & Berrada, Asmae & Svendsen, Harald G. & Mentesidi, Konstantina, 2018. "Grid code status for wind farms interconnection in Northern Africa and Spain: Descriptions and recommendations for Northern Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2584-2598.
    8. Rodrigues, E.M.G. & Osório, G.J. & Godina, R. & Bizuayehu, A.W. & Lujano-Rojas, J.M. & Catalão, J.P.S., 2016. "Grid code reinforcements for deeper renewable generation in insular energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 163-177.
    9. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    10. Li, Pengfei & Hu, Weihao & Hu, Rui & Huang, Qi & Yao, Jun & Chen, Zhe, 2019. "Strategy for wind power plant contribution to frequency control under variable wind speed," Renewable Energy, Elsevier, vol. 130(C), pages 1226-1236.
    11. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    12. Yang, Chao & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Chen, Zhe & Wen, Jinyu & He, Haibo, 2019. "Dynamic event-triggered robust secondary frequency control for islanded AC microgrid," Applied Energy, Elsevier, vol. 242(C), pages 821-836.
    13. Saranchimeg, Sainbold & Nair, Nirmal K.C., 2021. "A novel framework for integration analysis of large-scale photovoltaic plants into weak grids," Applied Energy, Elsevier, vol. 282(PA).
    14. Li, Yong & He, Li & Liu, Fang & Tan, Yi & Cao, Yijia & Luo, Longfu & Shahidehpour, Mohammod, 2018. "A dynamic coordinated control strategy of WTG-ES combined system for short-term frequency support," Renewable Energy, Elsevier, vol. 119(C), pages 1-11.
    15. Jae-Won Chang & Gyu-Sub Lee & Hyeon-Jin Moon & Mark B. Glick & Seung-Il Moon, 2019. "Coordinated Frequency and State-of-Charge Control with Multi-Battery Energy Storage Systems and Diesel Generators in an Isolated Microgrid," Energies, MDPI, Open Access Journal, vol. 12(9), pages 1-16, April.
    16. José Ignacio Sarasúa & Guillermo Martínez-Lucas & Carlos A. Platero & José Ángel Sánchez-Fernández, 2018. "Dual Frequency Regulation in Pumping Mode in a Wind–Hydro Isolated System," Energies, MDPI, Open Access Journal, vol. 11(11), pages 1-17, October.
    17. Colmenar-Santos, Antonio & Linares-Mena, Ana-Rosa & Borge-Diez, David & Quinto-Alemany, Carlos-Domingo, 2017. "Impact assessment of electric vehicles on islands grids: A case study for Tenerife (Spain)," Energy, Elsevier, vol. 120(C), pages 385-396.
    18. Lobato, E. & Doenges, K. & Egido, I. & Sigrist, L., 2020. "Limits to wind aggregation: Empirical assessment in the Spanish electricity system," Renewable Energy, Elsevier, vol. 147(P1), pages 1321-1330.
    19. Huda, A.S.N. & Živanović, R., 2017. "Large-scale integration of distributed generation into distribution networks: Study objectives, review of models and computational tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 974-988.
    20. Mararakanye, Ndamulelo & Bekker, Bernard, 2019. "Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 441-451.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:71:y:2017:i:c:p:191-202. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.