IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v80y2015icp629-643.html
   My bibliography  Save this article

Optimal use of kinetic energy for the inertial support from variable speed wind turbines

Author

Listed:
  • Hafiz, Faizal
  • Abdennour, Adel

Abstract

The use of kinetic energy, stored in the rotational masses of Variable Speed Wind Turbines (VSWT), for inertial support is well established. The idea is to employ the fast control response of the VSWT to inject additional power for the short duration following the disturbance. However, the variable speed operation of the VSWT poses a great challenge in successfully designing an appropriate control approach, applicable for wide operating ranges, capable of minimizing the effects of energy regain by the Wind Turbine (WT) after the support period. To address this issue, this paper proposes a modified inertia-emulation scheme, based on Step Over-Production (SOP) approach. Further, to enable optimum energy transfer and to handle the problem of variable Stored Kinetic Energy (SKE), the shaping parameters of the proposed scheme are optimized using the Particle Swarm Optimization (PSO) algorithm. The results show that the proposed approach can limit the fall of frequency while reducing post disturbances across the entire operating range of the WT. In addition, the quantitative analysis reveals that the proposed method can easily satisfy the stringent grid code requirements for the inertia emulation and provides a better alternative to the conventional inertia control architectures.

Suggested Citation

  • Hafiz, Faizal & Abdennour, Adel, 2015. "Optimal use of kinetic energy for the inertial support from variable speed wind turbines," Renewable Energy, Elsevier, vol. 80(C), pages 629-643.
  • Handle: RePEc:eee:renene:v:80:y:2015:i:c:p:629-643
    DOI: 10.1016/j.renene.2015.02.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115001676
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jevin D. West & Theodore Bergstrom & Carl T. Bergstrom, 2014. "Cost Effectiveness Of Open Access Publications," Economic Inquiry, Western Economic Association International, vol. 52(4), pages 1315-1321, October.
    2. Sivakumaran, Karthik & Li, Yuwei & Cassidy, Michael & Madanat, Samer, 2014. "Access and the choice of transit technology," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 204-221.
    3. Oecd, 2014. "Access Network Speed Tests," OECD Digital Economy Papers 237, OECD Publishing.
    4. de Alegría, Iñigo Martinez & Andreu, Jon & Martín, José Luis & Ibañez, Pedro & Villate, José Luis & Camblong, Haritza, 2007. "Connection requirements for wind farms: A survey on technical requierements and regulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1858-1872, October.
    5. Hansen, Anca D. & Altin, Müfit & Margaris, Ioannis D. & Iov, Florin & Tarnowski, Germán C., 2014. "Analysis of the short-term overproduction capability of variable speed wind turbines," Renewable Energy, Elsevier, vol. 68(C), pages 326-336.
    6. Yingcheng, Xue & Nengling, Tai, 2011. "Review of contribution to frequency control through variable speed wind turbine," Renewable Energy, Elsevier, vol. 36(6), pages 1671-1677.
    7. Yu-Chun Cheng & Jen-Jia Lin, 2014. "Job Accessibility Effects on Apartment Rentals," ERES eres2014_53, European Real Estate Society (ERES).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose-Ignacio Sarasua, 2020. "Hybrid Wind–PV Frequency Control Strategy under Variable Weather Conditions in Isolated Power Systems," Sustainability, MDPI, Open Access Journal, vol. 12(18), pages 1-1, September.
    2. Tielens, Pieter & Van Hertem, Dirk, 2016. "The relevance of inertia in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 999-1009.
    3. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    4. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose Ignacio Sarasua, 2020. "An Adaptive Control Scheme for Variable Speed Wind Turbines Providing Frequency Regulation in Isolated Power Systems with Thermal Generation," Energies, MDPI, Open Access Journal, vol. 13(13), pages 1-1, July.
    5. Attya, A.B. & Dominguez-Garcia, J.L. & Anaya-Lara, O., 2018. "A review on frequency support provision by wind power plants: Current and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2071-2087.
    6. Shin Young Heo & Mun Kyeom Kim & Jin Woo Choi, 2015. "Hybrid Intelligent Control Method to Improve the Frequency Support Capability of Wind Energy Conversion Systems," Energies, MDPI, Open Access Journal, vol. 8(10), pages 1-22, October.
    7. Ana Fernández-Guillamón & Antonio Vigueras-Rodríguez & Emilio Gómez-Lázaro & Ángel Molina-García, 2018. "Fast Power Reserve Emulation Strategy for VSWT Supporting Frequency Control in Multi-Area Power Systems," Energies, MDPI, Open Access Journal, vol. 11(10), pages 1-1, October.
    8. Wickramasinghe, Amila & Perera, Sarath & Agalgaonkar, Ashish P. & Meegahapola, Lasantha, 2016. "Synchronous mode operation of DFIG based wind turbines for improvement of power system inertia," Renewable Energy, Elsevier, vol. 95(C), pages 152-161.
    9. Ana Fernández-Guillamón & Jorge Villena-Lapaz & Antonio Vigueras-Rodríguez & Tania García-Sánchez & Ángel Molina-García, 2018. "An Adaptive Frequency Strategy for Variable Speed Wind Turbines: Application to High Wind Integration Into Power Systems," Energies, MDPI, Open Access Journal, vol. 11(6), pages 1-1, June.
    10. Kheshti, Mostafa & Ding, Lei & Nayeripour, Majid & Wang, Xiaowei & Terzija, Vladimir, 2019. "Active power support of wind turbines for grid frequency events using a reliable power reference scheme," Renewable Energy, Elsevier, vol. 139(C), pages 1241-1254.
    11. Hafiz, Faizal & Abdennour, Adel, 2016. "An adaptive neuro-fuzzy inertia controller for variable-speed wind turbines," Renewable Energy, Elsevier, vol. 92(C), pages 136-146.
    12. Zameer Ahmad & Jose Rueda Torres & Nidarshan Veera Kumar & Elyas Rakhshani & Peter Palensky & Mart van der Meijden, 2020. "A Power Hardware-in-the-Loop Based Method for FAPR Compliance Testing of the Wind Turbine Converters Control," Energies, MDPI, Open Access Journal, vol. 13(19), pages 1-1, October.
    13. Müfit Altin & Jan Christian Kuhlmann & Kaushik Das & Anca Daniela Hansen, 2018. "Optimization of Synthetic Inertial Response from Wind Power Plants," Energies, MDPI, Open Access Journal, vol. 11(5), pages 1-1, April.
    14. Azizi, Askar & Nourisola, Hamid & Shoja-Majidabad, Sajjad, 2019. "Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller," Renewable Energy, Elsevier, vol. 135(C), pages 55-65.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:80:y:2015:i:c:p:629-643. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.