IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i6p1671-1677.html
   My bibliography  Save this article

Review of contribution to frequency control through variable speed wind turbine

Author

Listed:
  • Yingcheng, Xue
  • Nengling, Tai

Abstract

The increasing wind penetration in today’s power grids has led to growing interest in the frequency control capabilities of wind generation. Several publications have proposed a variety of methods both on the levels of a single turbine and of a wind farm. This paper focuses on the role of wind generation in a system’s primary frequency control. Wind turbine control methods that enable frequency support and control are presented. The advantages and disadvantages of each method are discussed.

Suggested Citation

  • Yingcheng, Xue & Nengling, Tai, 2011. "Review of contribution to frequency control through variable speed wind turbine," Renewable Energy, Elsevier, vol. 36(6), pages 1671-1677.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:6:p:1671-1677
    DOI: 10.1016/j.renene.2010.11.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110005112
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.11.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Anca D. & Sørensen, Poul & Iov, Florin & Blaabjerg, Frede, 2006. "Centralised power control of wind farm with doubly fed induction generators," Renewable Energy, Elsevier, vol. 31(7), pages 935-951.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sales-Setién, Ester & Peñarrocha-Alós, Ignacio, 2020. "Robust estimation and diagnosis of wind turbine pitch misalignments at a wind farm level," Renewable Energy, Elsevier, vol. 146(C), pages 1746-1765.
    2. Senjyu, Tomonobu & Kaneko, Toshiaki & Uehara, Akie & Yona, Atsushi & Sekine, Hideomi & Kim, Chul-Hwan, 2009. "Output power control for large wind power penetration in small power system," Renewable Energy, Elsevier, vol. 34(11), pages 2334-2343.
    3. Fernández, R.D. & Mantz, R.J. & Battaiotto, P.E., 2007. "Impact of wind farms on a power system. An eigenvalue analysis approach," Renewable Energy, Elsevier, vol. 32(10), pages 1676-1688.
    4. Li, Pengfei & Hu, Weihao & Hu, Rui & Huang, Qi & Yao, Jun & Chen, Zhe, 2019. "Strategy for wind power plant contribution to frequency control under variable wind speed," Renewable Energy, Elsevier, vol. 130(C), pages 1226-1236.
    5. Shi, Jie & Wang, Luhao & Lee, Wei-Jen & Cheng, Xingong & Zong, Xiju, 2019. "Hybrid Energy Storage System (HESS) optimization enabling very short-term wind power generation scheduling based on output feature extraction," Applied Energy, Elsevier, vol. 256(C).
    6. Guglielmo D’Amico & Filippo Petroni & Salvatore Vergine, 2022. "Ramp Rate Limitation of Wind Power: An Overview," Energies, MDPI, vol. 15(16), pages 1-15, August.
    7. Eissa (SIEEE), M.M., 2015. "Protection techniques with renewable resources and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1645-1667.
    8. Ioannis D. Margaris & Anca D. Hansen & Poul Sørensen & Nikolaos D. Hatziargyriou, 2010. "Illustration of Modern Wind Turbine Ancillary Services," Energies, MDPI, vol. 3(6), pages 1-13, June.
    9. Hantao Cui & Yichen Zhang & Kevin L. Tomsovic & Fangxing (Fran) Li, 2022. "Power electronics‐interfaced cyber‐physical power systems: A review on modeling, simulation, and cybersecurity," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(6), November.
    10. Willis, D.J. & Niezrecki, C. & Kuchma, D. & Hines, E. & Arwade, S.R. & Barthelmie, R.J. & DiPaola, M. & Drane, P.J. & Hansen, C.J. & Inalpolat, M. & Mack, J.H. & Myers, A.T. & Rotea, M., 2018. "Wind energy research: State-of-the-art and future research directions," Renewable Energy, Elsevier, vol. 125(C), pages 133-154.
    11. Hyungyu Kim & Kwansu Kim & Insu Paek, 2019. "A Study on the Effect of Closed-Loop Wind Farm Control on Power and Tower Load in Derating the TSO Command Condition," Energies, MDPI, vol. 12(10), pages 1-19, May.
    12. Siniscalchi-Minna, Sara & Bianchi, Fernando D. & De-Prada-Gil, Mikel & Ocampo-Martinez, Carlos, 2019. "A wind farm control strategy for power reserve maximization," Renewable Energy, Elsevier, vol. 131(C), pages 37-44.
    13. Mohd Ashraf Ahmad & Shun-ichi Azuma & Toshiharu Sugie, 2014. "A Model-Free Approach for Maximizing Power Production of Wind Farm Using Multi-Resolution Simultaneous Perturbation Stochastic Approximation," Energies, MDPI, vol. 7(9), pages 1-23, August.
    14. Li, Qing'an & Wang, Ye & Kamada, Yasunari & Maeda, Takao & Xu, Jianzhong & Zhou, Shuni & Zhang, Fanghong & Cai, Chang, 2022. "Diagonal inflow effect on the wake characteristics of a horizontal axis wind turbine with Gaussian model and field measurements," Energy, Elsevier, vol. 238(PB).
    15. Fernandez, L.M. & Garcia, C.A. & Jurado, F., 2008. "Comparative study on the performance of control systems for doubly fed induction generator (DFIG) wind turbines operating with power regulation," Energy, Elsevier, vol. 33(9), pages 1438-1452.
    16. Jay P. Goit & Wim Munters & Johan Meyers, 2016. "Optimal Coordinated Control of Power Extraction in LES of a Wind Farm with Entrance Effects," Energies, MDPI, vol. 9(1), pages 1-20, January.
    17. Dongmyoung Kim & Taesu Jeon & Insu Paek & Daeyoung Kim, 2022. "A Study on Available Power Estimation Algorithm and Its Validation," Energies, MDPI, vol. 15(7), pages 1-14, April.
    18. Amer Saeed, M. & Mehroz Khan, Hafiz & Ashraf, Arslan & Aftab Qureshi, Suhail, 2018. "Analyzing effectiveness of LVRT techniques for DFIG wind turbine system and implementation of hybrid combination with control schemes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2487-2501.
    19. Bingtuan Gao & Wei Wei & Luoma Zhang & Ning Chen & Yingjun Wu & Yi Tang, 2014. "Differential Protection for an Outgoing Transformer of Large-Scale Doubly Fed Induction Generator-Based Wind Farms," Energies, MDPI, vol. 7(9), pages 1-20, August.
    20. Rodríguez-Amenedo, J.L. & Arnaltes, S. & Rodríguez, M.A., 2008. "Operation and coordinated control of fixed and variable speed wind farms," Renewable Energy, Elsevier, vol. 33(3), pages 406-414.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:6:p:1671-1677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.