IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v189y2019ics0360544219318298.html
   My bibliography  Save this article

Community-scale baseload generation from marine energy

Author

Listed:
  • Soudan, Bassel

Abstract

While significant work has been done on the use of solar and wind energy as sources of renewable generation, marine energy is only recently receiving serious consideration. This work investigates the prospects of generating electrical power by harnessing the energy inherent in the seas and oceans. Here we examine the possibilities for community-scale off-grid distributed base power generation from marine energy with application to electrically deficient coastal communities in underdeveloped regions.

Suggested Citation

  • Soudan, Bassel, 2019. "Community-scale baseload generation from marine energy," Energy, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219318298
    DOI: 10.1016/j.energy.2019.116134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219318298
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chernin, Leon & Val, Dimitri V., 2017. "Probabilistic prediction of cavitation on rotor blades of tidal stream turbines," Renewable Energy, Elsevier, vol. 113(C), pages 688-696.
    2. Sheng, Wanan & Alcorn, Raymond & Lewis, Anthony, 2015. "On improving wave energy conversion, part I: Optimal and control technologies," Renewable Energy, Elsevier, vol. 75(C), pages 922-934.
    3. Sheng, Wanan & Alcorn, Raymond & Lewis, Anthony, 2015. "On improving wave energy conversion, part II: Development of latching control technologies," Renewable Energy, Elsevier, vol. 75(C), pages 935-944.
    4. Hussain, Akhtar & Arif, Syed Muhammad & Aslam, Muhammad, 2017. "Emerging renewable and sustainable energy technologies: State of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 12-28.
    5. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    6. Walters, Roy A. & Tarbotton, Michael R. & Hiles, Clayton E., 2013. "Estimation of tidal power potential," Renewable Energy, Elsevier, vol. 51(C), pages 255-262.
    7. Khan, M.J. & Bhuyan, G. & Iqbal, M.T. & Quaicoe, J.E., 2009. "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review," Applied Energy, Elsevier, vol. 86(10), pages 1823-1835, October.
    8. Wang, Liguo & Isberg, Jan & Tedeschi, Elisabetta, 2018. "Review of control strategies for wave energy conversion systems and their validation: the wave-to-wire approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 366-379.
    9. Pelc, Robin & Fujita, Rod M., 2002. "Renewable energy from the ocean," Marine Policy, Elsevier, vol. 26(6), pages 471-479, November.
    10. Bryden, I.G & Naik, S & Fraenkel, P & Bullen, C.R, 1998. "Matching tidal current plants to local flow conditions," Energy, Elsevier, vol. 23(9), pages 699-709.
    11. Wright, Glen, 2015. "Marine governance in an industrialised ocean: A case study of the emerging marine renewable energy industry," Marine Policy, Elsevier, vol. 52(C), pages 77-84.
    12. Quirapas, Mary Ann Joy Robles & Lin, Htet & Abundo, Michael Lochinvar Sim & Brahim, Sahara & Santos, Diane, 2015. "Ocean renewable energy in Southeast Asia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 799-817.
    13. Uihlein, Andreas & Magagna, Davide, 2016. "Wave and tidal current energy – A review of the current state of research beyond technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1070-1081.
    14. Yang, Bo & Yu, Tao & Shu, Hongchun & Zhang, Yuming & Chen, Jian & Sang, Yiyan & Jiang, Lin, 2018. "Passivity-based sliding-mode control design for optimal power extraction of a PMSG based variable speed wind turbine," Renewable Energy, Elsevier, vol. 119(C), pages 577-589.
    15. Yang, Bo & Yu, Tao & Shu, Hongchun & Dong, Jun & Jiang, Lin, 2018. "Robust sliding-mode control of wind energy conversion systems for optimal power extraction via nonlinear perturbation observers," Applied Energy, Elsevier, vol. 210(C), pages 711-723.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinxin Liu & Nan Li & Feng Liu & Hailin Mu & Longxi Li & Xiaoyu Liu, 2021. "Optimal Design on Fossil-to-Renewable Energy Transition of Regional Integrated Energy Systems under CO 2 Emission Abatement Control: A Case Study in Dalian, China," Energies, MDPI, vol. 14(10), pages 1-25, May.
    2. Alkasrawi, Malek & Al-Othman, Amani & Tawalbeh, Muhammad & Doncan, Shona & Gurram, Raghu & Singsaas, Eric & Almomani, Fares & Al-Asheh, Sameer, 2021. "A novel technique of paper mill sludge conversion to bioethanol toward sustainable energy production: Effect of fiber recovery on the saccharification hydrolysis and fermentation," Energy, Elsevier, vol. 223(C).
    3. Choupin, Ophelie & Del Río-Gamero, B. & Schallenberg-Rodríguez, Julieta & Yánez-Rosales, Pablo, 2022. "Integration of assessment-methods for wave renewable energy: Resource and installation feasibility," Renewable Energy, Elsevier, vol. 185(C), pages 455-482.
    4. Akdemir, Kerem Ziya & Robertson, Bryson & Oikonomou, Konstantinos & Kern, Jordan & Voisin, Nathalie & Hanif, Sarmad & Bhattacharya, Saptarshi, 2023. "Opportunities for wave energy in bulk power system operations," Applied Energy, Elsevier, vol. 352(C).
    5. Li, Ming & Cao, Sunliang & Zhu, Xiaolin & Xu, Yang, 2022. "Techno-economic analysis of the transition towards the large-scale hybrid wind-tidal supported coastal zero-energy communities," Applied Energy, Elsevier, vol. 316(C).
    6. Soudan, Bassel & Darya, Abdollah, 2020. "Autonomous smart switching control for off-grid hybrid PV/battery/diesel power system," Energy, Elsevier, vol. 211(C).
    7. Chakraborty, Sankhadeep & Dwivedi, Prasoom & Chatterjee, Sushanta K. & Gupta, Rajesh, 2021. "Factors to Promote Ocean Energy in India," Energy Policy, Elsevier, vol. 159(C).
    8. A.G. Olabi & Tabbi Wilberforce & Enas Taha Sayed & Khaled Elsaid & Mohammad Ali Abdelkareem, 2020. "Prospects of Fuel Cell Combined Heat and Power Systems," Energies, MDPI, vol. 13(16), pages 1-20, August.
    9. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    10. Abdelkareem, Mohammad Ali & Sayed, Enas Taha & Nakagawa, Nobuyoshi, 2020. "Significance of diffusion layers on the performance of liquid and vapor feed passive direct methanol fuel cells," Energy, Elsevier, vol. 209(C).
    11. Alami, Abdul Hai & Aokal, Kamilia & Faraj, Mohammed, 2020. "Investigating nickel foam as photoanode substrate for potential dye-sensitized solar cells applications," Energy, Elsevier, vol. 211(C).
    12. A. G. Olabi & Tabbi Wilberforce & Khaled Elsaid & Tareq Salameh & Enas Taha Sayed & Khaled Saleh Husain & Mohammad Ali Abdelkareem, 2021. "Selection Guidelines for Wind Energy Technologies," Energies, MDPI, vol. 14(11), pages 1-34, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    2. Li, Gang & Zhu, Weidong, 2023. "Tidal current energy harvesting technologies: A review of current status and life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    3. Hussain, Akhtar & Arif, Syed Muhammad & Aslam, Muhammad, 2017. "Emerging renewable and sustainable energy technologies: State of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 12-28.
    4. Hu, Huakun & Xue, Wendong & Jiang, Peng & Li, Yong, 2022. "Bibliometric analysis for ocean renewable energy: An comprehensive review for hotspots, frontiers, and emerging trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Milad Shadman & Corbiniano Silva & Daiane Faller & Zhijia Wu & Luiz Paulo de Freitas Assad & Luiz Landau & Carlos Levi & Segen F. Estefen, 2019. "Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil," Energies, MDPI, vol. 12(19), pages 1-37, September.
    6. Faÿ, François-Xavier & Henriques, João C. & Kelly, James & Mueller, Markus & Abusara, Moahammad & Sheng, Wanan & Marcos, Marga, 2020. "Comparative assessment of control strategies for the biradial turbine in the Mutriku OWC plant," Renewable Energy, Elsevier, vol. 146(C), pages 2766-2784.
    7. Nachtane, M. & Tarfaoui, M. & Goda, I. & Rouway, M., 2020. "A review on the technologies, design considerations and numerical models of tidal current turbines," Renewable Energy, Elsevier, vol. 157(C), pages 1274-1288.
    8. Shadman, Milad & Guarniz Avalos, Gustavo Omar & Estefen, Segen F., 2021. "On the power performance of a wave energy converter with a direct mechanical drive power take-off system controlled by latching," Renewable Energy, Elsevier, vol. 169(C), pages 157-177.
    9. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    10. Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O. & Robles, E. & Faÿ, F.-X., 2016. "Latching control of a floating oscillating-water-column wave energy converter," Renewable Energy, Elsevier, vol. 90(C), pages 229-241.
    11. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    12. Jahangir, Mohammad Hossein & Hosseini, Seyed Sina & Mehrpooya, Mehdi, 2018. "A detailed theoretical modeling and parametric investigation of potential power in heaving buoys," Energy, Elsevier, vol. 154(C), pages 201-209.
    13. Zarzuelo, Carmen & López-Ruiz, Alejandro & Ortega-Sánchez, Miguel, 2018. "Impact of human interventions on tidal stream power: The case of Cádiz Bay," Energy, Elsevier, vol. 145(C), pages 88-104.
    14. Hongchun Shu & Na An & Bo Yang & Yue Dai & Yu Guo, 2020. "Single Pole-to-Ground Fault Analysis of MMC-HVDC Transmission Lines Based on Capacitive Fuzzy Identification Algorithm," Energies, MDPI, vol. 13(2), pages 1-18, January.
    15. Hongchun Shu & Yiming Han & Ran Huang & Yutao Tang & Pulin Cao & Bo Yang & Yu Zhang, 2020. "Fault Model and Travelling Wave Matching Based Single Terminal Fault Location Algorithm for T-Connection Transmission Line: A Yunnan Power Grid Study," Energies, MDPI, vol. 13(6), pages 1-22, March.
    16. Ozkop, Emre & Altas, Ismail H., 2017. "Control, power and electrical components in wave energy conversion systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 106-115.
    17. Liu, Yijin & Li, Ye & He, Fenglan & Wang, Haifeng, 2017. "Comparison study of tidal stream and wave energy technology development between China and some Western Countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 701-716.
    18. Bonovas, Markos I. & Anagnostopoulos, Ioannis S., 2020. "Modelling of operation and optimum design of a wave power take-off system with energy storage," Renewable Energy, Elsevier, vol. 147(P1), pages 502-514.
    19. Zhou, Yu & Ning, Dezhi & Liang, Dongfang & Cai, Shuqun, 2021. "Nonlinear hydrodynamic analysis of an offshore oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    20. Nasrollahi, Sadaf & Kazemi, Aliyeh & Jahangir, Mohammad-Hossein & Aryaee, Sara, 2023. "Selecting suitable wave energy technology for sustainable development, an MCDM approach," Renewable Energy, Elsevier, vol. 202(C), pages 756-772.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219318298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.