IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v11y2007i9p2032-2057.html
   My bibliography  Save this article

Forty candles for the Rance River TPP tides provide renewable and sustainable power generation

Author

Listed:
  • Charlier, Roger H.

Abstract

Prices of oil and other fossil fuels have proven a powerful incentive for the alternative energy hunters. The alternatives include the various forms of ocean energy that, often considered uneconomical for electricity generation, have become attractive and competitive. Many sites throughout the world have been considered, at one time or another, suitable for implantation of a tidal power station, but very few have witnessed implementation of often ambitious plans. The Rance River tidal power plant, near St Malo in Brittany (France) is an exception. It is celebrating in 2006, 40 years of durable, loyal and productive service.

Suggested Citation

  • Charlier, Roger H., 2007. "Forty candles for the Rance River TPP tides provide renewable and sustainable power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 2032-2057, December.
  • Handle: RePEc:eee:rensus:v:11:y:2007:i:9:p:2032-2057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(06)00062-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongyao Luo & Xin Liu & Zhengwei Wang & Yexiang Xiao & Chenglian He & Yiyang Zhang, 2017. "Optimization of the Runner for Extremely Low Head Bidirectional Tidal Bulb Turbine," Energies, MDPI, vol. 10(6), pages 1-13, June.
    2. Moreira, Túlio Marcondes & de Faria, Jackson Geraldo & Vaz-de-Melo, Pedro O.S. & Medeiros-Ribeiro, Gilberto, 2023. "Development and validation of an AI-Driven model for the La Rance tidal barrage: A generalisable case study," Applied Energy, Elsevier, vol. 332(C).
    3. Li, Ying & Pan, Dong-Zi, 2017. "The ebb and flow of tidal barrage development in Zhejiang Province, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 380-389.
    4. O Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal energy update 2009," Applied Energy, Elsevier, vol. 87(2), pages 398-409, February.
    5. Li, Gang & Zhu, Weidong, 2023. "Tidal current energy harvesting technologies: A review of current status and life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    6. Mejia-Olivares, Carlos Joel & Haigh, Ivan D. & Angeloudis, Athanasios & Lewis, Matt J. & Neill, Simon P., 2020. "Tidal range energy resource assessment of the Gulf of California, Mexico," Renewable Energy, Elsevier, vol. 155(C), pages 469-483.
    7. Fairley, I. & Ahmadian, R. & Falconer, R.A. & Willis, M.R. & Masters, I., 2014. "The effects of a Severn Barrage on wave conditions in the Bristol Channel," Renewable Energy, Elsevier, vol. 68(C), pages 428-442.
    8. Guo, Qiang & Zhou, Lingjiu & Wang, Zhengwei, 2016. "Numerical evaluation of the clearance geometries effect on the flow field and performance of a hydrofoil," Renewable Energy, Elsevier, vol. 99(C), pages 390-397.
    9. Neill, Simon P. & Angeloudis, Athanasios & Robins, Peter E. & Walkington, Ian & Ward, Sophie L. & Masters, Ian & Lewis, Matt J. & Piano, Marco & Avdis, Alexandros & Piggott, Matthew D. & Aggidis, Geor, 2018. "Tidal range energy resource and optimization – Past perspectives and future challenges," Renewable Energy, Elsevier, vol. 127(C), pages 763-778.
    10. Martí Barclay, Vicky & Neill, Simon P. & Angeloudis, Athanasios, 2023. "Tidal range resource of the Patagonian shelf," Renewable Energy, Elsevier, vol. 209(C), pages 85-96.
    11. Grabbe, Mårten & Lalander, Emilia & Lundin, Staffan & Leijon, Mats, 2009. "A review of the tidal current energy resource in Norway," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1898-1909, October.
    12. Luo, Yongyao & Wang, Zhengwei & Liu, Xin & Xiao, Yexiang & Chen, Changkun & Wang, Haoping & Yan, Jianhua, 2015. "Numerical prediction of pressure pulsation for a low head bidirectional tidal bulb turbine," Energy, Elsevier, vol. 89(C), pages 730-738.
    13. Laurens, J.-M. & Ait-Mohammed, M. & Tarfaoui, M., 2016. "Design of bare and ducted axial marine current turbines," Renewable Energy, Elsevier, vol. 89(C), pages 181-187.
    14. Xu, Tongtong & Haas, Kevin A. & Gunawan, Budi, 2023. "Estimating annual energy production from short tidal current records," Renewable Energy, Elsevier, vol. 207(C), pages 105-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:11:y:2007:i:9:p:2032-2057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.