IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v68y2014icp428-442.html
   My bibliography  Save this article

The effects of a Severn Barrage on wave conditions in the Bristol Channel

Author

Listed:
  • Fairley, I.
  • Ahmadian, R.
  • Falconer, R.A.
  • Willis, M.R.
  • Masters, I.

Abstract

The study investigates the impact that construction of a Severn Barrage in the Severn Estuary, on the west coast of the UK, might have on local wave conditions. Implementation of a barrage will impact on tidal currents and water elevations in the wider region. There is strong tidal modulation of wave conditions under the natural regime and therefore barrage-induced changes to tidal conditions could affect wave modulation in the region. This paper uses Swan, an open source 3rd generation spectral wave model, to investigate the possible impacts of construction of a barrage on tidal modulation of the wave conditions. It is found that current variations, rather than water level variations, are the dominant factor in tidal modulation of wave conditions. Barrage implementation does not substantially change the modulation of the wave period or direction. However, barrage implementation does affect the tidal modulation of wave heights in the area of interest. The tidal modulation of the wave heights is generally reduced compared to the natural case; the peaks in the wave heights on an incoming tide are slightly lowered and there is lesser attenuation in wave heights on the outgoing tide. This modulation leads to net changes in the wave heights over one tidal cycle. For all of the tested wave conditions, this net change is small for the majority of the tested domain, namely to within ±5% of the no barrage case. There are some areas of greater change, most notably larger net increases in the wave heights near the North Somerset coast where the post-construction net wave height increase over a tidal cycle approach 20% of the pre-construction conditions. These changes do not impact coastal flooding because the wave height increase is not co-incident with high tide. Importantly, the maximum wave height is not increased and thus the likelihood of extreme events is not increased. The area of greatest reduction is between Swansea and Porthcawl. Changes over a neap tidal cycle show similar patterns of net change, but the modulation over the tidal cycle is different; primarily the magnitude of modulation is half that for the spring tide case and the shape is altered in some locations.

Suggested Citation

  • Fairley, I. & Ahmadian, R. & Falconer, R.A. & Willis, M.R. & Masters, I., 2014. "The effects of a Severn Barrage on wave conditions in the Bristol Channel," Renewable Energy, Elsevier, vol. 68(C), pages 428-442.
  • Handle: RePEc:eee:renene:v:68:y:2014:i:c:p:428-442
    DOI: 10.1016/j.renene.2014.02.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114001141
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.02.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Smith, Helen C.M. & Pearce, Charles & Millar, Dean L., 2012. "Further analysis of change in nearshore wave climate due to an offshore wave farm: An enhanced case study for the Wave Hub site," Renewable Energy, Elsevier, vol. 40(1), pages 51-64.
    2. Neill, Simon P. & Jordan, James R. & Couch, Scott J., 2012. "Impact of tidal energy converter (TEC) arrays on the dynamics of headland sand banks," Renewable Energy, Elsevier, vol. 37(1), pages 387-397.
    3. Xia, Junqiang & Falconer, Roger A. & Lin, Binliang, 2010. "Impact of different operating modes for a Severn Barrage on the tidal power and flood inundation in the Severn Estuary, UK," Applied Energy, Elsevier, vol. 87(7), pages 2374-2391, July.
    4. Xia, Junqiang & Falconer, Roger A. & Lin, Binliang, 2010. "Hydrodynamic impact of a tidal barrage in the Severn Estuary, UK," Renewable Energy, Elsevier, vol. 35(7), pages 1455-1468.
    5. Neill, Simon P. & Litt, Emmer J. & Couch, Scott J. & Davies, Alan G., 2009. "The impact of tidal stream turbines on large-scale sediment dynamics," Renewable Energy, Elsevier, vol. 34(12), pages 2803-2812.
    6. Ahmadian, Reza & Falconer, Roger A., 2012. "Assessment of array shape of tidal stream turbines on hydro-environmental impacts and power output," Renewable Energy, Elsevier, vol. 44(C), pages 318-327.
    7. Xia, Junqiang & Falconer, Roger A. & Lin, Binliang & Tan, Guangming, 2012. "Estimation of annual energy output from a tidal barrage using two different methods," Applied Energy, Elsevier, vol. 93(C), pages 327-336.
    8. Rusu, Liliana & Guedes Soares, C., 2012. "Wave energy assessments in the Azores islands," Renewable Energy, Elsevier, vol. 45(C), pages 183-196.
    9. Iglesias, G. & López, M. & Carballo, R. & Castro, A. & Fraguela, J.A. & Frigaard, P., 2009. "Wave energy potential in Galicia (NW Spain)," Renewable Energy, Elsevier, vol. 34(11), pages 2323-2333.
    10. Iglesias, G. & Carballo, R., 2010. "Offshore and inshore wave energy assessment: Asturias (N Spain)," Energy, Elsevier, vol. 35(5), pages 1964-1972.
    11. Fairley, Iain & Evans, Paul & Wooldridge, Chris & Willis, Miles & Masters, Ian, 2013. "Evaluation of tidal stream resource in a potential array area via direct measurements," Renewable Energy, Elsevier, vol. 57(C), pages 70-78.
    12. Ahmadian, Reza & Falconer, Roger & Bockelmann-Evans, Bettina, 2012. "Far-field modelling of the hydro-environmental impact of tidal stream turbines," Renewable Energy, Elsevier, vol. 38(1), pages 107-116.
    13. Charlier, Roger H., 2007. "Forty candles for the Rance River TPP tides provide renewable and sustainable power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 2032-2057, December.
    14. O Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal energy update 2009," Applied Energy, Elsevier, vol. 87(2), pages 398-409, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ian Masters & Alison Williams & T. Nick Croft & Michael Togneri & Matt Edmunds & Enayatollah Zangiabadi & Iain Fairley & Harshinie Karunarathna, 2015. "A Comparison of Numerical Modelling Techniques for Tidal Stream Turbine Analysis," Energies, MDPI, vol. 8(8), pages 1-21, July.
    2. Guillou, Nicolas, 2017. "Modelling effects of tidal currents on waves at a tidal stream energy site," Renewable Energy, Elsevier, vol. 114(PA), pages 180-190.
    3. Mackinnon, Kathryn & Smith, Helen C.M. & Moore, Francesca & van der Weijde, Adriaan H. & Lazakis, Iraklis, 2018. "Environmental interactions of tidal lagoons: A comparison of industry perspectives," Renewable Energy, Elsevier, vol. 119(C), pages 309-319.
    4. Fairley, I. & Smith, H.C.M. & Robertson, B. & Abusara, M. & Masters, I., 2017. "Spatio-temporal variation in wave power and implications for electricity supply," Renewable Energy, Elsevier, vol. 114(PA), pages 154-165.
    5. Lewis, M.J. & Angeloudis, A. & Robins, P.E. & Evans, P.S. & Neill, S.P., 2017. "Influence of storm surge on tidal range energy," Energy, Elsevier, vol. 122(C), pages 25-36.
    6. Jingjing Xue & Reza Ahmadian & Roger A. Falconer, 2019. "Optimising the Operation of Tidal Range Schemes," Energies, MDPI, vol. 12(15), pages 1-23, July.
    7. Lisboa, A.C. & Vieira, T.L. & Guedes, L.S.M. & Vieira, D.A.G. & Saldanha, R.R., 2017. "Optimal analytic dispatch for tidal energy generation," Renewable Energy, Elsevier, vol. 108(C), pages 371-379.
    8. Angeloudis, Athanasios & Ahmadian, Reza & Falconer, Roger A. & Bockelmann-Evans, Bettina, 2016. "Numerical model simulations for optimisation of tidal lagoon schemes," Applied Energy, Elsevier, vol. 165(C), pages 522-536.
    9. Guillou, Nicolas & Chapalain, Georges, 2015. "Numerical modelling of nearshore wave energy resource in the Sea of Iroise," Renewable Energy, Elsevier, vol. 83(C), pages 942-953.
    10. Fairley, I. & Karunarathna, H. & Masters, I., 2018. "The influence of waves on morphodynamic impacts of energy extraction at a tidal stream turbine site in the Pentland Firth," Renewable Energy, Elsevier, vol. 125(C), pages 630-647.
    11. Xue, Jingjing & Ahmadian, Reza & Jones, Owen, 2020. "Genetic Algorithm in Tidal Range Schemes’ Optimisation," Energy, Elsevier, vol. 200(C).
    12. Fairley, I. & Masters, I. & Karunarathna, H., 2015. "The cumulative impact of tidal stream turbine arrays on sediment transport in the Pentland Firth," Renewable Energy, Elsevier, vol. 80(C), pages 755-769.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roche, R.C. & Walker-Springett, K. & Robins, P.E. & Jones, J. & Veneruso, G. & Whitton, T.A. & Piano, M. & Ward, S.L. & Duce, C.E. & Waggitt, J.J. & Walker-Springett, G.R. & Neill, S.P. & Lewis, M.J. , 2016. "Research priorities for assessing potential impacts of emerging marine renewable energy technologies: Insights from developments in Wales (UK)," Renewable Energy, Elsevier, vol. 99(C), pages 1327-1341.
    2. Iglesias, G. & Carballo, R., 2014. "Wave farm impact: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 69(C), pages 375-385.
    3. Carballo, R. & Iglesias, G., 2013. "Wave farm impact based on realistic wave-WEC interaction," Energy, Elsevier, vol. 51(C), pages 216-229.
    4. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "A strategic analysis of tidal current energy conversion systems in the European Union," Applied Energy, Elsevier, vol. 212(C), pages 527-551.
    5. Sanchez, M. & Carballo, R. & Ramos, V. & Iglesias, G., 2014. "Floating vs. bottom-fixed turbines for tidal stream energy: A comparative impact assessment," Energy, Elsevier, vol. 72(C), pages 691-701.
    6. Xue, Jingjing & Ahmadian, Reza & Jones, Owen & Falconer, Roger A., 2021. "Design of tidal range energy generation schemes using a Genetic Algorithm model," Applied Energy, Elsevier, vol. 286(C).
    7. Ramos, V. & Carballo, R. & Álvarez, M. & Sánchez, M. & Iglesias, G., 2013. "Assessment of the impacts of tidal stream energy through high-resolution numerical modeling," Energy, Elsevier, vol. 61(C), pages 541-554.
    8. Aguiar, Alessandro L. & Marta-Almeida, Martinho & Cirano, Mauro & Pereira, Janini & da Cunha, Letícia Cotrim, 2024. "Numerical assessment of tidal potential energy in the Brazilian Equatorial Shelf," Renewable Energy, Elsevier, vol. 220(C).
    9. Mestres, Marc & Cerralbo, Pablo & Grifoll, Manel & Sierra, Joan Pau & Espino, Manuel, 2019. "Modelling assessment of the tidal stream resource in the Ria of Ferrol (NW Spain) using a year-long simulation," Renewable Energy, Elsevier, vol. 131(C), pages 811-817.
    10. Lewis, M. & Neill, S.P. & Robins, P.E. & Hashemi, M.R., 2015. "Resource assessment for future generations of tidal-stream energy arrays," Energy, Elsevier, vol. 83(C), pages 403-415.
    11. Iglesias, G. & Sánchez, M. & Carballo, R. & Fernández, H., 2012. "The TSE index – A new tool for selecting tidal stream sites in depth-limited regions," Renewable Energy, Elsevier, vol. 48(C), pages 350-357.
    12. Astariz, S. & Perez-Collazo, C. & Abanades, J. & Iglesias, G., 2015. "Towards the optimal design of a co-located wind-wave farm," Energy, Elsevier, vol. 84(C), pages 15-24.
    13. Neill, Simon P. & Angeloudis, Athanasios & Robins, Peter E. & Walkington, Ian & Ward, Sophie L. & Masters, Ian & Lewis, Matt J. & Piano, Marco & Avdis, Alexandros & Piggott, Matthew D. & Aggidis, Geor, 2018. "Tidal range energy resource and optimization – Past perspectives and future challenges," Renewable Energy, Elsevier, vol. 127(C), pages 763-778.
    14. Nash, S. & Phoenix, A., 2017. "A review of the current understanding of the hydro-environmental impacts of energy removal by tidal turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 648-662.
    15. Fairley, I. & Masters, I. & Karunarathna, H., 2015. "The cumulative impact of tidal stream turbine arrays on sediment transport in the Pentland Firth," Renewable Energy, Elsevier, vol. 80(C), pages 755-769.
    16. Angeloudis, Athanasios & Ahmadian, Reza & Falconer, Roger A. & Bockelmann-Evans, Bettina, 2016. "Numerical model simulations for optimisation of tidal lagoon schemes," Applied Energy, Elsevier, vol. 165(C), pages 522-536.
    17. Angeloudis, Athanasios & Kramer, Stephan C. & Avdis, Alexandros & Piggott, Matthew D., 2018. "Optimising tidal range power plant operation," Applied Energy, Elsevier, vol. 212(C), pages 680-690.
    18. Pacheco, A. & Ferreira, Ó., 2016. "Hydrodynamic changes imposed by tidal energy converters on extracting energy on a real case scenario," Applied Energy, Elsevier, vol. 180(C), pages 369-385.
    19. Fallon, D. & Hartnett, M. & Olbert, A. & Nash, S., 2014. "The effects of array configuration on the hydro-environmental impacts of tidal turbines," Renewable Energy, Elsevier, vol. 64(C), pages 10-25.
    20. Ian Masters & Alison Williams & T. Nick Croft & Michael Togneri & Matt Edmunds & Enayatollah Zangiabadi & Iain Fairley & Harshinie Karunarathna, 2015. "A Comparison of Numerical Modelling Techniques for Tidal Stream Turbine Analysis," Energies, MDPI, vol. 8(8), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:68:y:2014:i:c:p:428-442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.