IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics0360544224004183.html
   My bibliography  Save this article

Enhancing tidal current turbine efficiency through multi-biomimetic blade design features

Author

Listed:
  • Chen, Yanling
  • Yang, Wenxian
  • Wei, Kexiang
  • Qin, Bo

Abstract

To achieve an efficient tidal current turbine (TCT), the impact of three biomimetic trailing edge designs (i.e., slabbing, slab-toothed, and serrated), a blade configuration design (i.e., sweep design) and their various combinations on TCT's power coefficient are numerically and experimentally studied in this paper. The novelty of this paper lies in its pioneering exploration of the synergistic effects of multiple biomimetic designs on the TCT's power generation and start-up performance, as well as the interplays between the sweep design and biomimetic trailing edge designs. Both numerical simulations and experimental studies provide compelling evidence that all three biomimetic trailing edge designs enhance the blade's energy capture efficiency. For example, at a 7° angle of attack, the lift-to-drag ratio for the slabbing trailing edge blade increases by 12.124% and the slab-toothed trailing edge blade increases by 11.770% compared to the standard blade. The incorporation of sweep design and biomimetic trailing edge design produces a further enhancement in both the TCT's power generation and startup performance. In particular, the simultaneous implementation of slabbed trailing edge design and sweep design makes the power generation efficiency of TCT increase by up to 54.72% when compared to TCTs using standard straight blades.

Suggested Citation

  • Chen, Yanling & Yang, Wenxian & Wei, Kexiang & Qin, Bo, 2024. "Enhancing tidal current turbine efficiency through multi-biomimetic blade design features," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004183
    DOI: 10.1016/j.energy.2024.130646
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224004183
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130646?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.