IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i6d10.1007_s10668-020-01013-4.html
   My bibliography  Save this article

Current trends and prospects of tidal energy technology

Author

Listed:
  • M. S. Chowdhury

    (Prince of Songkla University
    Prince of Songkla University)

  • Kazi Sajedur Rahman

    (Universiti Kebangsaan Malaysia)

  • Vidhya Selvanathan

    (Universiti Kebangsaan Malaysia)

  • Narissara Nuthammachot

    (Prince of Songkla University)

  • Montri Suklueng

    (Prince of Songkla University)

  • Ali Mostafaeipour

    (Prince of Songkla University
    Prince of Songkla University)

  • Asiful Habib

    (University of Malaya)

  • Md. Akhtaruzzaman

    (Universiti Kebangsaan Malaysia)

  • Nowshad Amin

    (Universiti Tenaga Nasional (@The Energy University), Jalan IKRAM-UNITEN)

  • Kuaanan Techato

    (Prince of Songkla University
    Prince of Songkla University
    Center of Excellence on Hazardous Substance Management (HSM))

Abstract

Generation of energy across the world is today reliant majorly on fossil fuels. The burning of these fuels is growing in line with the increase in the demand for energy globally. Consequently, climate change, air contamination, and energy security issues are rising as well. An efficient alternative to this grave hazard is the speedy substitution of fossil fuel-based carbon energy sources with the shift to clean sources of renewable energy that cause zero emissions. This needs to happen in conjunction with the continuing increase in the overall consumption of energy worldwide. Many resources of renewable energy are available. These include thermal, solar photovoltaic, biomass and wind, tidal energy, hydropower, and geothermal. Notably, tidal energy exhibits great potential with regard to its dependability, superior energy density, certainty, and durability. The energy mined from the tides on the basis of steady and anticipated vertical movements of the water, causing tidal currents, could be converted into kinetic energy to produce electricity. Tidal barrages could channel mechanical energy, while tidewater river turbines can seize the energy from tidal currents. This study discusses the present trends, ecological effects, and the prospects for technology related to tidal energy.

Suggested Citation

  • M. S. Chowdhury & Kazi Sajedur Rahman & Vidhya Selvanathan & Narissara Nuthammachot & Montri Suklueng & Ali Mostafaeipour & Asiful Habib & Md. Akhtaruzzaman & Nowshad Amin & Kuaanan Techato, 2021. "Current trends and prospects of tidal energy technology," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8179-8194, June.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:6:d:10.1007_s10668-020-01013-4
    DOI: 10.1007/s10668-020-01013-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-01013-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-01013-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Coles, D.S. & Blunden, L.S. & Bahaj, A.S., 2017. "Assessment of the energy extraction potential at tidal sites around the Channel Islands," Energy, Elsevier, vol. 124(C), pages 171-186.
    2. Charles Warren & Carolyn Lumsden & Simone O'Dowd & Richard Birnie, 2005. "'Green On Green': Public perceptions of wind power in Scotland and Ireland," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 48(6), pages 853-875.
    3. Sun, X. & Chick, J.P. & Bryden, I.G., 2008. "Laboratory-scale simulation of energy extraction from tidal currents," Renewable Energy, Elsevier, vol. 33(6), pages 1267-1274.
    4. Behrens, Sam & Hayward, Jennifer A. & Woodman, Stuart C. & Hemer, Mark A. & Ayre, Melanie, 2015. "Wave energy for Australia's National Electricity Market," Renewable Energy, Elsevier, vol. 81(C), pages 685-693.
    5. Guillou, Nicolas & Neill, Simon P. & Robins, Peter E., 2018. "Characterising the tidal stream power resource around France using a high-resolution harmonic database," Renewable Energy, Elsevier, vol. 123(C), pages 706-718.
    6. do Valle Costa, Claudia & La Rovere, Emilio & Assmann, Dirk, 2008. "Technological innovation policies to promote renewable energies: Lessons from the European experience for the Brazilian case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 65-90, January.
    7. McLachlan, Carly, 2009. "'You don't do a chemistry experiment in your best china': Symbolic interpretations of place and technology in a wave energy case," Energy Policy, Elsevier, vol. 37(12), pages 5342-5350, December.
    8. O Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal energy update 2009," Applied Energy, Elsevier, vol. 87(2), pages 398-409, February.
    9. Ladenburg, Jacob, 2010. "Attitudes towards offshore wind farms--The role of beach visits on attitude and demographic and attitude relations," Energy Policy, Elsevier, vol. 38(3), pages 1297-1304, March.
    10. Khan, N. & Kalair, A. & Abas, N. & Haider, A., 2017. "Review of ocean tidal, wave and thermal energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 590-604.
    11. Lim, Yun Seng & Koh, Siong Lee, 2010. "Analytical assessments on the potential of harnessing tidal currents for electricity generation in Malaysia," Renewable Energy, Elsevier, vol. 35(5), pages 1024-1032.
    12. Firestone, Jeremy & Kempton, Willett, 2007. "Public opinion about large offshore wind power: Underlying factors," Energy Policy, Elsevier, vol. 35(3), pages 1584-1598, March.
    13. Chen, Wei-Bo & Liu, Wen-Cheng & Hsu, Ming-Hsi, 2013. "Modeling assessment of tidal current energy at Kinmen Island, Taiwan," Renewable Energy, Elsevier, vol. 50(C), pages 1073-1082.
    14. Devine-Wright, Patrick, 2011. "Enhancing local distinctiveness fosters public acceptance of tidal energy: A UK case study," Energy Policy, Elsevier, vol. 39(1), pages 83-93, January.
    15. Florian Dorn & Clemens Fuest & Marcell Göttert & Carla Krolage & Stefan Lautenbacher & Robert Lehmann & Sebastian Link & Sascha Möhrle & Andreas Peichl & Magnus Reif & Stefan Sauer & Marc Stöckli & Kl, 2020. "The Economic Costs of the Coronavirus Shutdown for Selected European Countries: A Scenario Calculation," EconPol Policy Brief 25, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    16. Dong-Hui Ko & Jaekwan Chung & Kwang-Soo Lee & Jin-Soon Park & Jin-Hak Yi, 2019. "Current Policy and Technology for Tidal Current Energy in Korea," Energies, MDPI, vol. 12(9), pages 1-15, May.
    17. Bonar, Paul A.J. & Bryden, Ian G. & Borthwick, Alistair G.L., 2015. "Social and ecological impacts of marine energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 486-495.
    18. Fox, Clive J. & Benjamins, Steven & Masden, Elizabeth A. & Miller, Raeanne, 2018. "Challenges and opportunities in monitoring the impacts of tidal-stream energy devices on marine vertebrates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1926-1938.
    19. Segura, E. & Morales, R. & Somolinos, J.A. & López, A., 2017. "Techno-economic challenges of tidal energy conversion systems: Current status and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 536-550.
    20. Kerr, Sandy & Watts, Laura & Colton, John & Conway, Flaxen & Hull, Angela & Johnson, Kate & Jude, Simon & Kannen, Andreas & MacDougall, Shelley & McLachlan, Carly & Potts, Tavis & Vergunst, Jo, 2014. "Establishing an agenda for social studies research in marine renewable energy," Energy Policy, Elsevier, vol. 67(C), pages 694-702.
    21. Esteban, Miguel & Leary, David, 2012. "Current developments and future prospects of offshore wind and ocean energy," Applied Energy, Elsevier, vol. 90(1), pages 128-136.
    22. Waldo, Åsa, 2012. "Offshore wind power in Sweden—A qualitative analysis of attitudes with particular focus on opponents," Energy Policy, Elsevier, vol. 41(C), pages 692-702.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. La Guardia, Marcello & D'Ippolito, Filippo & Cellura, Maurizio, 2022. "A GIS-based optimization model finalized to the localization of new power-to-gas plants: The case study of Sicily (Italy)," Renewable Energy, Elsevier, vol. 197(C), pages 828-835.
    2. Fouz, D.M. & Carballo, R. & López, I. & Iglesias, G., 2022. "A holistic methodology for hydrokinetic energy site selection," Applied Energy, Elsevier, vol. 317(C).
    3. Cala, Anggie & Maturana-Córdoba, Aymer & Soto-Verjel, Joseph, 2023. "Exploring the pretreatments' influence on pressure reverse osmosis: PRISMA review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Li, Gang & Zhu, Weidong, 2023. "Tidal current energy harvesting technologies: A review of current status and life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    5. Cruz, M. & Henriques, R. & Pinho, J.L. & Avilez-Valente, P. & Bio, A. & Iglesias, I., 2023. "Assessment of the potential for hydrokinetic energy production in the Douro river estuary under sea level rise scenarios," Energy, Elsevier, vol. 271(C).
    6. Dinçer, Hasan & Yüksel, Serhat & Hacioglu, Umit & Yilmaz, Mustafa K. & Delen, Dursun, 2023. "Development of a sustainable corporate social responsibility index for performance evaluation of the energy industry: A hybrid decision-making methodology," Resources Policy, Elsevier, vol. 85(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "A strategic analysis of tidal current energy conversion systems in the European Union," Applied Energy, Elsevier, vol. 212(C), pages 527-551.
    2. Bonar, Paul A.J. & Bryden, Ian G. & Borthwick, Alistair G.L., 2015. "Social and ecological impacts of marine energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 486-495.
    3. Gonyo, Sarah Ball & Fleming, Chloe S. & Freitag, Amy & Goedeke, Theresa L., 2021. "Resident perceptions of local offshore wind energy development: Modeling efforts to improve participatory processes," Energy Policy, Elsevier, vol. 149(C).
    4. David Rudolph & Claire Haggett & Mhairi Aitken, 2018. "Community benefits from offshore renewables: The relationship between different understandings of impact, community, and benefit," Environment and Planning C, , vol. 36(1), pages 92-117, February.
    5. Hu, Huakun & Xue, Wendong & Jiang, Peng & Li, Yong, 2022. "Bibliometric analysis for ocean renewable energy: An comprehensive review for hotspots, frontiers, and emerging trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Ruano-Chamorro, Cristina & Castilla, Juan Carlos & Gelcich, Stefan, 2018. "Human dimensions of marine hydrokinetic energies: Current knowledge and research gaps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 1979-1989.
    7. Devine-Wright, Patrick & Wiersma, Bouke, 2020. "Understanding community acceptance of a potential offshore wind energy project in different locations: An island-based analysis of ‘place-technology fit’," Energy Policy, Elsevier, vol. 137(C).
    8. Mendoza, Edgar & Lithgow, Debora & Flores, Pamela & Felix, Angélica & Simas, Teresa & Silva, Rodolfo, 2019. "A framework to evaluate the environmental impact of OCEAN energy devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 440-449.
    9. Jenkins, Lekelia Danielle & Dreyer, Stacia Jeanne & Polis, Hilary Jacqueline & Beaver, Ezra & Kowalski, Adam A. & Linder, Hannah L. & McMillin, Thomas Neal & McTiernan, Kaylie Laura & Rogier, Thea The, 2018. "Human dimensions of tidal energy: A review of theories and frameworks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 323-337.
    10. Haggett, Claire, 2011. "Understanding public responses to offshore wind power," Energy Policy, Elsevier, vol. 39(2), pages 503-510, February.
    11. Westerberg, Vanja & Jacobsen, Jette Bredahl & Lifran, Robert, 2013. "The case for offshore wind farms, artificial reefs and sustainable tourism in the French mediterranean," Tourism Management, Elsevier, vol. 34(C), pages 172-183.
    12. Ladenburg, Jacob & Dahlgaard, Jens-Olav, 2012. "Attitudes, threshold levels and cumulative effects of the daily wind-turbine encounters," Applied Energy, Elsevier, vol. 98(C), pages 40-46.
    13. Carlisle, Juliet E. & Kane, Stephanie L. & Solan, David & Bowman, Madelaine & Joe, Jeffrey C., 2015. "Public attitudes regarding large-scale solar energy development in the U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 835-847.
    14. Salak, B. & Lindberg, K. & Kienast, F. & Hunziker, M., 2021. "How landscape-technology fit affects public evaluations of renewable energy infrastructure scenarios. A hybrid choice model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    15. Liu, Xiaodong & Chen, Zheng & Si, Yulin & Qian, Peng & Wu, He & Cui, Lin & Zhang, Dahai, 2021. "A review of tidal current energy resource assessment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    16. Richardson, Riley Lindsay & Buckham, Bradley & McWhinnie, Lauren Helen, 2022. "Mapping a blue energy future for British Columbia: Creating a holistic framework for tidal stream energy development in remote coastal communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    17. Burić, Melita & Grgurić, Sanja & Mikulčić, Hrvoje & Wang, Xuebin, 2021. "A numerical investigation of tidal current energy resource potential in a sea strait," Energy, Elsevier, vol. 234(C).
    18. Andersson, Johnn & Perez Vico, Eugenia & Hammar, Linus & Sandén, Björn A., 2017. "The critical role of informed political direction for advancing technology: The case of Swedish marine energy," Energy Policy, Elsevier, vol. 101(C), pages 52-64.
    19. Cuadra, L. & Salcedo-Sanz, S. & Nieto-Borge, J.C. & Alexandre, E. & Rodríguez, G., 2016. "Computational intelligence in wave energy: Comprehensive review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1223-1246.
    20. Janhunen, Sari & Hujala, Maija & Pätäri, Satu, 2014. "Owners of second homes, locals and their attitudes towards future rural wind farm," Energy Policy, Elsevier, vol. 73(C), pages 450-460.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:6:d:10.1007_s10668-020-01013-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.