IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v197y2022icp828-835.html
   My bibliography  Save this article

A GIS-based optimization model finalized to the localization of new power-to-gas plants: The case study of Sicily (Italy)

Author

Listed:
  • La Guardia, Marcello
  • D'Ippolito, Filippo
  • Cellura, Maurizio

Abstract

In 2020 the European Commission approved the GND (Green New Deal), a strategic plan aimed at the decarbonization of the EU by 2050. In this scenario, the diffusion of alternative renewable energy sources (RESs) play a key role, particularly electric energy production from wind and photovoltaic power plants. Regardless, the nonprogrammable nature of these power sources led recent studies to focus the interest on the power-to-gas solution (PtG), consisting of the electrolytic transformation of excesses of unused electric energy into hydrogen. The complexity of this technology requires the development of strategic optimization models aimed at finding the best locations for new PtG plants in specific territorial scenarios. This paper presents the development of a GIS-based optimization model that combines an operational research approach with territorial services based on geographic information system (GIS) data. The study is located in Sicily (Italy), considering the large renewable energy penetration in the larger Mediterranean island. The developed model allows us to find the best location for new PtG installations in the considered area by combining GIS automated processing with cost function resolution. The results of this work could be useful in the years to come in light of the rapid spread of hydrogen energy production in Italy.

Suggested Citation

  • La Guardia, Marcello & D'Ippolito, Filippo & Cellura, Maurizio, 2022. "A GIS-based optimization model finalized to the localization of new power-to-gas plants: The case study of Sicily (Italy)," Renewable Energy, Elsevier, vol. 197(C), pages 828-835.
  • Handle: RePEc:eee:renene:v:197:y:2022:i:c:p:828-835
    DOI: 10.1016/j.renene.2022.07.120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122011211
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johnes, Jill, 2015. "Operational Research in education," European Journal of Operational Research, Elsevier, vol. 243(3), pages 683-696.
    2. Avinash Bharti & Kunwar Paritosh & Venkata Ravibabu Mandla & Aakash Chawade & Vivekanand Vivekanand, 2021. "GIS Application for the Estimation of Bioenergy Potential from Agriculture Residues: An Overview," Energies, MDPI, vol. 14(4), pages 1-15, February.
    3. Pietro Colella & Andrea Mazza & Ettore Bompard & Gianfranco Chicco & Angela Russo & Enrico Maria Carlini & Mauro Caprabianca & Federico Quaglia & Luca Luzi & Giuseppina Nuzzo, 2021. "Model-Based Identification of Alternative Bidding Zones: Applications of Clustering Algorithms with Topology Constraints," Energies, MDPI, vol. 14(10), pages 1-17, May.
    4. Francesco Mancini & Benedetto Nastasi, 2020. "Solar Energy Data Analytics: PV Deployment and Land Use," Energies, MDPI, vol. 13(2), pages 1-18, January.
    5. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos & Tsialis, Panagiotis & Ioannou, Konstantinos, 2018. "Electricity consumption and RES plants in Greece: Typologies of regional units," Renewable Energy, Elsevier, vol. 127(C), pages 134-144.
    6. Haas, Reinhard & Panzer, Christian & Resch, Gustav & Ragwitz, Mario & Reece, Gemma & Held, Anne, 2011. "A historical review of promotion strategies for electricity from renewable energy sources in EU countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1003-1034, February.
    7. Calvert, K., 2011. "Geomatics and bioenergy feasibility assessments: Taking stock and looking forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1117-1124, February.
    8. Valerii Havrysh & Antonina Kalinichenko & Grzegorz Mentel & Urszula Mentel & Dinara G. Vasbieva, 2020. "Husk Energy Supply Systems for Sunflower Oil Mills," Energies, MDPI, vol. 13(2), pages 1-14, January.
    9. Glasnovic, Zvonimir & Margeta, Jure, 2011. "Vision of total renewable electricity scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1873-1884, May.
    10. McDonagh, Shane & O'Shea, Richard & Wall, David M. & Deane, J.P. & Murphy, Jerry D., 2018. "Modelling of a power-to-gas system to predict the levelised cost of energy of an advanced renewable gaseous transport fuel," Applied Energy, Elsevier, vol. 215(C), pages 444-456.
    11. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    12. Götz, Manuel & Lefebvre, Jonathan & Mörs, Friedemann & McDaniel Koch, Amy & Graf, Frank & Bajohr, Siegfried & Reimert, Rainer & Kolb, Thomas, 2016. "Renewable Power-to-Gas: A technological and economic review," Renewable Energy, Elsevier, vol. 85(C), pages 1371-1390.
    13. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    14. Salvatore Giuffrida & Filippo Gagliano & Francesco Nocera & Maria Rosa Trovato, 2018. "Landscape Assessment and Economic Accounting in Wind Farm Programming: Two Cases in Sicily," Land, MDPI, vol. 7(4), pages 1-20, October.
    15. Zhou, Sheng & Wang, Yu & Zhou, Yuyu & Clarke, Leon E. & Edmonds, James A., 2018. "Roles of wind and solar energy in China’s power sector: Implications of intermittency constraints," Applied Energy, Elsevier, vol. 213(C), pages 22-30.
    16. Varun & Prakash, Ravi & Bhat, Inder Krishnan, 2009. "Energy, economics and environmental impacts of renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2716-2721, December.
    17. Thema, M. & Bauer, F. & Sterner, M., 2019. "Power-to-Gas: Electrolysis and methanation status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 775-787.
    18. Pawita Bunme & Shuhei Yamamoto & Atsushi Shiota & Yasunori Mitani, 2021. "GIS-Based Distribution System Planning for New PV Installations," Energies, MDPI, vol. 14(13), pages 1-18, June.
    19. Joseph Cullen, 2013. "Measuring the Environmental Benefits of Wind-Generated Electricity," American Economic Journal: Economic Policy, American Economic Association, vol. 5(4), pages 107-133, November.
    20. Kuriqi, Alban & Pinheiro, António N. & Sordo-Ward, Alvaro & Bejarano, María D. & Garrote, Luis, 2021. "Ecological impacts of run-of-river hydropower plants—Current status and future prospects on the brink of energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    21. M. S. Chowdhury & Kazi Sajedur Rahman & Vidhya Selvanathan & Narissara Nuthammachot & Montri Suklueng & Ali Mostafaeipour & Asiful Habib & Md. Akhtaruzzaman & Nowshad Amin & Kuaanan Techato, 2021. "Current trends and prospects of tidal energy technology," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8179-8194, June.
    22. Sørensen, Bent & Meibom, Peter, 1999. "GIS tools for renewable energy modelling," Renewable Energy, Elsevier, vol. 16(1), pages 1262-1267.
    23. Bird, Lori & Lew, Debra & Milligan, Michael & Carlini, E. Maria & Estanqueiro, Ana & Flynn, Damian & Gomez-Lazaro, Emilio & Holttinen, Hannele & Menemenlis, Nickie & Orths, Antje & Eriksen, Peter Børr, 2016. "Wind and solar energy curtailment: A review of international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 577-586.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Müller, Leander A. & Leonard, Alycia & Trotter, Philipp A. & Hirmer, Stephanie, 2023. "Green hydrogen production and use in low- and middle-income countries: A least-cost geospatial modelling approach applied to Kenya," Applied Energy, Elsevier, vol. 343(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janke, Leandro & McDonagh, Shane & Weinrich, Sören & Murphy, Jerry & Nilsson, Daniel & Hansson, Per-Anders & Nordberg, Åke, 2020. "Optimizing power-to-H2 participation in the Nord Pool electricity market: Effects of different bidding strategies on plant operation," Renewable Energy, Elsevier, vol. 156(C), pages 820-836.
    2. Morgenthaler, Simon & Dünzen, Justus & Stadler, Ingo & Witthaut, Dirk, 2021. "Three stages in the co-transformation of the energy and mobility sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Duncan, Corey & Roche, Robin & Jemei, Samir & Pera, Marie-Cécile, 2022. "Techno-economical modelling of a power-to-gas system for plant configuration evaluation in a local context," Applied Energy, Elsevier, vol. 315(C).
    4. Andrea Barbaresi & Mirko Morini & Agostino Gambarotta, 2022. "Review on the Status of the Research on Power-to-Gas Experimental Activities," Energies, MDPI, vol. 15(16), pages 1-32, August.
    5. Yang, Yuting, 2022. "Electricity interconnection with intermittent renewables," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    6. Lewandowska-Bernat, Anna & Desideri, Umberto, 2018. "Opportunities of power-to-gas technology in different energy systems architectures," Applied Energy, Elsevier, vol. 228(C), pages 57-67.
    7. Chauvy, Remi & Dubois, Lionel & Lybaert, Paul & Thomas, Diane & De Weireld, Guy, 2020. "Production of synthetic natural gas from industrial carbon dioxide," Applied Energy, Elsevier, vol. 260(C).
    8. Corey Duncan & Robin Roche & Samir Jemei & Marie-Cécile Péra, 2022. "Techno-economical modelling of a power-to-gas system for plant configuration evaluation in a local context," Post-Print hal-03692975, HAL.
    9. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    10. Percebois, Jacques & Pommeret, Stanislas, 2019. "Storage cost induced by a large substitution of nuclear by intermittent renewable energies: The French case," Energy Policy, Elsevier, vol. 135(C).
    11. Drechsler, Carsten & Agar, David W., 2020. "Intensified integrated direct air capture - power-to-gas process based on H2O and CO2 from ambient air," Applied Energy, Elsevier, vol. 273(C).
    12. Quarton, Christopher J. & Samsatli, Sheila, 2020. "The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: Insights from integrated value chain optimisation," Applied Energy, Elsevier, vol. 257(C).
    13. Sayama, Shogo & Yamamoto, Seiji, 2022. "A 6-kW thermally self-sustained two-stage CO2 methanation reactor: design and experimental evaluation of steady-state performance under full-load conditions," Applied Energy, Elsevier, vol. 325(C).
    14. Xiong, Bobby & Predel, Johannes & Crespo del Granado, Pedro & Egging-Bratseth, Ruud, 2021. "Spatial flexibility in redispatch: Supporting low carbon energy systems with Power-to-Gas," Applied Energy, Elsevier, vol. 283(C).
    15. Maestre, V.M. & Ortiz, A. & Ortiz, I., 2021. "Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    16. Wang, Honglin & Liu, Yanrong & Laaksonen, Aatto & Krook-Riekkola, Anna & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "Carbon recycling – An immense resource and key to a smart climate engineering: A survey of technologies, cost and impurity impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    17. Howell, Shaun & Rezgui, Yacine & Hippolyte, Jean-Laurent & Jayan, Bejay & Li, Haijiang, 2017. "Towards the next generation of smart grids: Semantic and holonic multi-agent management of distributed energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 193-214.
    18. Lean, Hooi Hooi & Smyth, Russell, 2013. "Will policies to promote renewable electricity generation be effective? Evidence from panel stationarity and unit root tests for 115 countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 371-379.
    19. McDonagh, Shane & Deane, Paul & Rajendran, Karthik & Murphy, Jerry D., 2019. "Are electrofuels a sustainable transport fuel? Analysis of the effect of controls on carbon, curtailment, and cost of hydrogen," Applied Energy, Elsevier, vol. 247(C), pages 716-730.
    20. Robert Bauer & Dominik Schopf & Grégoire Klaus & Raimund Brotsack & Javier Valdes, 2022. "Energy Cell Simulation for Sector Coupling with Power-to-Methane: A Case Study in Lower Bavaria," Energies, MDPI, vol. 15(7), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:197:y:2022:i:c:p:828-835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.