IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i2p361-d307697.html
   My bibliography  Save this article

Husk Energy Supply Systems for Sunflower Oil Mills

Author

Listed:
  • Valerii Havrysh

    (Department of Tractors and Agricultural Machines, Operating and Maintenance, Mykolayiv National Agrarian University, 54020 Mykolayiv, Ukraine)

  • Antonina Kalinichenko

    (Institute of Environmental Engineering and Biotechnology, University of Opole, 45-365 Opole, Poland)

  • Grzegorz Mentel

    (Department of Economics and Finance, University of Information Technology and Management in Rzeszow, 35-225 Rzeszow, Poland)

  • Urszula Mentel

    (Department of Security Science, Rzeszow University of Technology, 35-959 Rzeszow, Poland)

  • Dinara G. Vasbieva

    (Foreign Languages Department, Financial University under the Government of the Russian Federation, Leningradsky prospect 49, Moscow 125993, Russian)

Abstract

Together with solar, wind, and hydro renewable energy sources (RES), biomass constitutes an integral part of the high-renewables electricity systems. Considerable feedstocks for electricity generation are process-based residues. Ukraine is the world leader in sunflower seed production, therefore, husk (a by-product of oil production) is a promising biofuel for combustion- based power plants. The plants consume primarily electricity and fossil fuels (natural gas or fuel oil) for steam production. Their usage affects the edible oil production cost and impacts on climate change. The above facts force us to look for alternatives. By-product (husk) utilization can reduce exhaustible energy consumption (fossil fuels and grid electricity) and mitigate climate change. The aim of the study is to make an energy and ecological assessment of biomass energy supply systems. Specifically, the electricity and heat consumption of Ukrainian sunflower oil mills is investigated. Different options of cogeneration systems are analyzed. The preferable mode of combustion-based husk combined heat and power plants is to meet their own heat demand and to sell surplus electricity. Relative gross income and carbon dioxide emission reductions are calculated. Our results show that husk utilization can meet electricity and heat requirements of edible plants. The surplus electricity may be sold to the grid. Husk combined heat and power plants may result in reduction of carbon dioxide by 200–300% and an increase of total income by 24.7–65.7% (compared to conventional energy supply systems).

Suggested Citation

  • Valerii Havrysh & Antonina Kalinichenko & Grzegorz Mentel & Urszula Mentel & Dinara G. Vasbieva, 2020. "Husk Energy Supply Systems for Sunflower Oil Mills," Energies, MDPI, vol. 13(2), pages 1-14, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:361-:d:307697
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/2/361/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/2/361/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antonina Kalinichenko & Valerii Havrysh & Igor Atamanyuk, 2019. "The Acceptable Alternative Vehicle Fuel Price," Energies, MDPI, vol. 12(20), pages 1-20, October.
    2. West, J. & Bailey, I. & Winter, M., 2010. "Renewable energy policy and public perceptions of renewable energy: A cultural theory approach," Energy Policy, Elsevier, vol. 38(10), pages 5739-5748, October.
    3. de Santoli, Livio & Mancini, Francesco & Nastasi, Benedetto & Piergrossi, Valentina, 2015. "Building integrated bioenergy production (BIBP): Economic sustainability analysis of Bari airport CHP (combined heat and power) upgrade fueled with bioenergy from short chain," Renewable Energy, Elsevier, vol. 81(C), pages 499-508.
    4. Eriksson, Ola & Finnveden, Goran & Ekvall, Tomas & Bjorklund, Anna, 2007. "Life cycle assessment of fuels for district heating: A comparison of waste incineration, biomass- and natural gas combustion," Energy Policy, Elsevier, vol. 35(2), pages 1346-1362, February.
    5. Zahra Fotourehchi, 2017. "Renewable Energy Consumption and Economic Growth: A Case Study for Developing Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 61-64.
    6. Bhattacharya, Mita & Paramati, Sudharshan Reddy & Ozturk, Ilhan & Bhattacharya, Sankar, 2016. "The effect of renewable energy consumption on economic growth: Evidence from top 38 countries," Applied Energy, Elsevier, vol. 162(C), pages 733-741.
    7. Daniel Ştefan Armeanu & Georgeta Vintilă & Ştefan Cristian Gherghina, 2017. "Does Renewable Energy Drive Sustainable Economic Growth? Multivariate Panel Data Evidence for EU-28 Countries," Energies, MDPI, vol. 10(3), pages 1-21, March.
    8. Martin J. Taylor & Hassan A. Alabdrabalameer & Vasiliki Skoulou, 2019. "Choosing Physical, Physicochemical and Chemical Methods of Pre-Treating Lignocellulosic Wastes to Repurpose into Solid Fuels," Sustainability, MDPI, vol. 11(13), pages 1-27, June.
    9. Musall, Fabian David & Kuik, Onno, 2011. "Local acceptance of renewable energy--A case study from southeast Germany," Energy Policy, Elsevier, vol. 39(6), pages 3252-3260, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sandro Sacchelli & Valerii Havrysh & Antonina Kalinichenko & Dariusz Suszanowicz, 2022. "Ground-Mounted Photovoltaic and Crop Cultivation: A Comparative Analysis," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    2. Valerii Havrysh & Antonina Kalinichenko & Edyta Szafranek & Vasyl Hruban, 2022. "Agricultural Land: Crop Production or Photovoltaic Power Plants," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    3. La Guardia, Marcello & D'Ippolito, Filippo & Cellura, Maurizio, 2022. "A GIS-based optimization model finalized to the localization of new power-to-gas plants: The case study of Sicily (Italy)," Renewable Energy, Elsevier, vol. 197(C), pages 828-835.
    4. Elias Martinez-Hernandez & Myriam A. Amezcua-Allieri & Jorge Aburto, 2021. "Assessing the Cost of Biomass and Bioenergy Production in Agroindustrial Processes," Energies, MDPI, vol. 14(14), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    2. Anca Mehedintu & Mihaela Sterpu & Georgeta Soava, 2018. "Estimation and Forecasts for the Share of Renewable Energy Consumption in Final Energy Consumption by 2020 in the European Union," Sustainability, MDPI, vol. 10(5), pages 1-22, May.
    3. Papież, Monika & Śmiech, Sławomir & Frodyma, Katarzyna, 2019. "Effects of renewable energy sector development on electricity consumption – Growth nexus in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    4. Iorember, Paul Terhemba & Usman, Ojonugwa & Jelilov, Gylych, 2019. "Asymmetric Effects of Renewable Energy Consumption, Trade Openness and Economic Growth on Environmental Quality in Nigeria and South Africa," MPRA Paper 96333, University Library of Munich, Germany, revised 2019.
    5. Tongyu Meng & Jamie Newth & Christine Woods, 2022. "Ethical Sensemaking in Impact Investing: Reasons and Motives in the Chinese Renewable Energy Sector," Journal of Business Ethics, Springer, vol. 179(4), pages 1091-1117, September.
    6. Hlalefang Khobai, 2018. "Renewable energy consumption and economic growth in Indonesia. Evidence from the ARDL bounds testing approach," Working Papers 1806, Department of Economics, Nelson Mandela University, revised Feb 2018.
    7. Błażej Suproń & Janusz Myszczyszyn, 2023. "Impact of Renewable and Non-Renewable Energy Consumption and CO 2 Emissions on Economic Growth in the Visegrad Countries," Energies, MDPI, vol. 16(20), pages 1-20, October.
    8. Muhammad Ikram, 2021. "Models for Predicting Non-Renewable Energy Competing with Renewable Source for Sustainable Energy Development: Case of Asia and Oceania Region," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 22(2), pages 133-160, December.
    9. Qiucheng Li & Jacob Cherian & Malik Shahzad Shabbir & Muhammad Safdar Sial & Jing Li & Ioana Mester & Alina Badulescu, 2021. "Exploring the Relationship between Renewable Energy Sources and Economic Growth. The Case of SAARC Countries," Energies, MDPI, vol. 14(3), pages 1-14, January.
    10. Bilgili, Faik & Kuşkaya, Sevda & Toğuç, Nurhan & Muğaloğlu, Erhan & Koçak, Emrah & Bulut, Ümit & Bağlıtaş, H. Hilal, 2019. "A revisited renewable consumption-growth nexus: A continuous wavelet approach through disaggregated data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 1-19.
    11. Vural, Gulfer, 2020. "Renewable and non-renewable energy-growth nexus: A panel data application for the selected Sub-Saharan African countries," Resources Policy, Elsevier, vol. 65(C).
    12. Si, Shuyang & Lyu, Mingjie & Lin Lawell, C.-Y. Cynthia & Chen, Song, 2021. "The effects of environmental policies in China on GDP, output, and profits," Energy Economics, Elsevier, vol. 94(C).
    13. Yilmaz Onur Ari, 2020. "The Relationship Between Renewable Energy Consumption, Trade Openness And Economic Growth: The Case Of Bosnia And Herzegovina," Economic Review: Journal of Economics and Business, University of Tuzla, Faculty of Economics, vol. 18(1), pages 49-59, May.
    14. Boubaker, Sabri & Omri, Anis, 2022. "How does renewable energy contribute to the growth versus environment debate?," Resources Policy, Elsevier, vol. 79(C).
    15. Halicioglu, Ferda & Ketenci, Natalya, 2018. "Output, renewable and non-renewable energy production, and international trade: Evidence from EU-15 countries," Energy, Elsevier, vol. 159(C), pages 995-1002.
    16. Dmitry Burakov & Max Freidin, 2017. "Financial Development, Economic Growth and Renewable Energy Consumption in Russia: A Vector Error Correction Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 7(6), pages 39-47.
    17. Nadia Singh & Richard Nyuur & Ben Richmond, 2019. "Renewable Energy Development as a Driver of Economic Growth: Evidence from Multivariate Panel Data Analysis," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    18. Ana-Maria Bercu & Gigel Paraschiv & Dan Lupu, 2019. "Investigating the Energy–Economic Growth–Governance Nexus: Evidence from Central and Eastern European Countries," Sustainability, MDPI, vol. 11(12), pages 1-21, June.
    19. Mihaela Simionescu & Carmen Beatrice Păuna & Tiberiu Diaconescu, 2020. "Renewable Energy and Economic Performance in the Context of the European Green Deal," Energies, MDPI, vol. 13(23), pages 1-19, December.
    20. Rafał Kasperowicz & Yuriy Bilan & Dalia Štreimikienė, 2020. "The renewable energy and economic growth nexus in European countries," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1086-1093, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:361-:d:307697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.