IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i10p1822-d114601.html
   My bibliography  Save this article

An Integrated Assessment Framework of Offshore Wind Power Projects Applying Equator Principles and Social Life Cycle Assessment

Author

Listed:
  • Yu-Che Tseng

    (Institute of Natural Resource Management, National Taipei University, New Taipei City 23741, Taiwan
    Partner and Taiwan CPA, Climate Change and Sustainability Service, Ernst and Young 11012, Taiwan)

  • Yuh-Ming Lee

    (Institute of Natural Resource Management, National Taipei University, New Taipei City 23741, Taiwan)

  • Shih-Jung Liao

    (Institute of Natural Resource Management, National Taipei University, New Taipei City 23741, Taiwan)

Abstract

This paper reviews offshore wind power project finance and provides an integrated assessment that employs Equator Principles, life cycle assessment, risk assessment, materiality analysis, credit assessment, and ISAE 3000 assurance. We have not seen any comprehensive review papers or book chapters that covers the entire offshore wind power project finance process. We also conducted an SWancor Formosa Phase 1 case study to illustrate the application of integrated assessment to better assist policymakers, wind farm developers, practitioners, potential investors and observers, and stakeholders in their decisions. We believe that this paper can form part of the effort to reduce information asymmetry and the transaction costs of wind power project finance, as well as mobilize green finance investments from the financial sector to renewable energy projects to achieve a national renewable energy policy.

Suggested Citation

  • Yu-Che Tseng & Yuh-Ming Lee & Shih-Jung Liao, 2017. "An Integrated Assessment Framework of Offshore Wind Power Projects Applying Equator Principles and Social Life Cycle Assessment," Sustainability, MDPI, vol. 9(10), pages 1-17, October.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:10:p:1822-:d:114601
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/10/1822/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/10/1822/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kao, Shih-Ming & Pearre, Nathaniel S., 2017. "Administrative arrangement for offshore wind power developments in Taiwan: Challenges and prospects," Energy Policy, Elsevier, vol. 109(C), pages 463-472.
    2. Martínez, E. & Jiménez, E. & Blanco, J. & Sanz, F., 2010. "LCA sensitivity analysis of a multi-megawatt wind turbine," Applied Energy, Elsevier, vol. 87(7), pages 2293-2303, July.
    3. Shui-Yan Tang & Ching-Ping Tang & Carlos Wing-Hung Lo, 2005. "Public Participation and Environmental Impact Assessment in Mainland China and Taiwan: Political Foundations of Environmental Management," Journal of Development Studies, Taylor & Francis Journals, vol. 41(1), pages 1-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yonggu Kim & Eul-Bum Lee, 2018. "A Probabilistic Alternative Approach to Optimal Project Profitability Based on the Value-at-Risk," Sustainability, MDPI, vol. 10(3), pages 1-24, March.
    2. Kristina Sehlin MacNeil & Sheelagh Daniels-Mayes & Skye Akbar & Jillian Marsh & Jenny Wik-Karlsson & Åsa Össbo, 2021. "Social Life Cycle Assessment Used in Indigenous Contexts: A Critical Analysis," Sustainability, MDPI, vol. 13(9), pages 1-14, May.
    3. Laura Castro-Santos & Almudena Filgueira-Vizoso & Carlos Álvarez-Feal & Luis Carral, 2018. "Influence of Size on the Economic Feasibility of Floating Offshore Wind Farms," Sustainability, MDPI, vol. 10(12), pages 1-13, November.
    4. Eva Segura & Rafael Morales & José A. Somolinos, 2019. "Influence of Automated Maneuvers on the Economic Feasibility of Tidal Energy Farms," Sustainability, MDPI, vol. 11(21), pages 1-22, October.
    5. Wen-Hsiang Liu, 2025. "Balancing Offshore Wind Energy Development and Fishery Community Well-Being in Taiwan: A Life Cycle Sustainability Assessment Approach," Sustainability, MDPI, vol. 17(7), pages 1-17, March.
    6. Park, Seona & Yun, Sun-Jin & Cho, Kongjang, 2024. "Energy justice: Lessons from offshore wind farm siting conflicts in South Korea," Energy Policy, Elsevier, vol. 185(C).
    7. Solano-Olivares, K. & Santoyo, E. & Santoyo-Castelazo, E., 2024. "Integrated sustainability assessment framework for geothermal energy technologies: A literature review and a new proposal of sustainability indicators for Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    8. Rizal Taufiq Fauzi & Patrick Lavoie & Luca Sorelli & Mohammad Davoud Heidari & Ben Amor, 2019. "Exploring the Current Challenges and Opportunities of Life Cycle Sustainability Assessment," Sustainability, MDPI, vol. 11(3), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    2. Rashedi, A. & Sridhar, I. & Tseng, K.J., 2013. "Life cycle assessment of 50MW wind firms and strategies for impact reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 89-101.
    3. Niklas Andersen & Ola Eriksson & Karl Hillman & Marita Wallhagen, 2016. "Wind Turbines’ End-of-Life: Quantification and Characterisation of Future Waste Materials on a National Level," Energies, MDPI, vol. 9(12), pages 1-24, November.
    4. Savino, Matteo M. & Manzini, Riccardo & Della Selva, Vincenzo & Accorsi, Riccardo, 2017. "A new model for environmental and economic evaluation of renewable energy systems: The case of wind turbines," Applied Energy, Elsevier, vol. 189(C), pages 739-752.
    5. Kaldellis, John K. & Zafirakis, D., 2011. "The wind energy (r)evolution: A short review of a long history," Renewable Energy, Elsevier, vol. 36(7), pages 1887-1901.
    6. Zihao Ma, 2025. "Towards environmental deliberative democracy in China," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 12(1), pages 1-11, December.
    7. Yang, Jinshui & Peng, Chaoyi & Xiao, Jiayu & Zeng, Jingcheng & Yuan, Yun, 2012. "Application of videometric technique to deformation measurement for large-scale composite wind turbine blade," Applied Energy, Elsevier, vol. 98(C), pages 292-300.
    8. Ro-Ting Lin & David C. Christiani & Ichiro Kawachi & Ta-Chien Chan & Po-Huang Chiang & Chang-Chuan Chan, 2016. "Increased Risk of Respiratory Mortality Associated with the High-Tech Manufacturing Industry: A 26-Year Study," IJERPH, MDPI, vol. 13(6), pages 1-12, June.
    9. Rey Martínez, F.J. & Velasco Gómez, E. & Martín García, C. & Sanz Requena, J.F. & Navas Gracia, L.M. & Hernández Navarro, S. & Correa Guimaraes, A. & Martín Gil, J., 2011. "Life cycle assessment of a semi-indirect ceramic evaporative cooler vs. a heat pump in two climate areas of Spain," Applied Energy, Elsevier, vol. 88(3), pages 914-921, March.
    10. Mengchan Zhao & Yangyang Cheng, 2024. "Is Public Participation Weak Environmental Regulation? Experience from China’s Environmental Public Interest Litigation Pilots," Sustainability, MDPI, vol. 16(20), pages 1-19, October.
    11. Yang, Jin & Chen, Bin, 2016. "Emergy-based sustainability evaluation of wind power generation systems," Applied Energy, Elsevier, vol. 177(C), pages 239-246.
    12. Wang, Like & Wang, Yuan & Du, Huibin & Zuo, Jian & Yi Man Li, Rita & Zhou, Zhihua & Bi, Fenfen & Garvlehn, McSimon P., 2019. "A comparative life-cycle assessment of hydro-, nuclear and wind power: A China study," Applied Energy, Elsevier, vol. 249(C), pages 37-45.
    13. Jingjing Zeng & Meng Yuan & Richard Feiock, 2019. "What Drives People to Complain about Environmental Issues? An Analysis Based on Panel Data Crossing Provinces of China," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
    14. Dufo-López, Rodolfo & Bernal-Agustín, José L. & Yusta-Loyo, José M. & Domínguez-Navarro, José A. & Ramírez-Rosado, Ignacio J. & Lujano, Juan & Aso, Ismael, 2011. "Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV–wind–diesel systems with batteries storage," Applied Energy, Elsevier, vol. 88(11), pages 4033-4041.
    15. Nagashima, Shin & Uchiyama, Yohji & Okajima, Keiichi, 2017. "Hybrid input–output table method for socioeconomic and environmental assessment of a wind power generation system," Applied Energy, Elsevier, vol. 185(P2), pages 1067-1075.
    16. Jing, You-Yin & Bai, He & Wang, Jiang-Jiang, 2012. "Multi-objective optimization design and operation strategy analysis of BCHP system based on life cycle assessment," Energy, Elsevier, vol. 37(1), pages 405-416.
    17. João Agra Neto & Mario Orestes Aguirre González & Rajiv Lucas Pereira de Castro & David Cassimiro de Melo & Kezauyn Miranda Aiquoc & Andressa Medeiros Santiso & Rafael Monteiro de Vasconcelos & Lucas , 2024. "Factors Influencing the Decision-Making Process at the End-of-Life Cycle of Onshore Wind Farms: A Systematic Review," Energies, MDPI, vol. 17(4), pages 1-42, February.
    18. Messagie, Maarten & Mertens, Jan & Oliveira, Luis & Rangaraju, Surendraprabu & Sanfelix, Javier & Coosemans, Thierry & Van Mierlo, Joeri & Macharis, Cathy, 2014. "The hourly life cycle carbon footprint of electricity generation in Belgium, bringing a temporal resolution in life cycle assessment," Applied Energy, Elsevier, vol. 134(C), pages 469-476.
    19. Hsin-Hua Tsai & Huan-Sheng Tseng & Chun-Kai Huang & Su-Chun Yu, 2022. "Review on the Conflicts between Offshore Wind Power and Fishery Rights: Marine Spatial Planning in Taiwan," Energies, MDPI, vol. 15(22), pages 1-15, November.
    20. Summerfield-Ryan, Oliver & Park, Susan, 2023. "The power of wind: The global wind energy industry's successes and failures," Ecological Economics, Elsevier, vol. 210(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:10:p:1822-:d:114601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.