IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v249y2019icp37-45.html
   My bibliography  Save this article

A comparative life-cycle assessment of hydro-, nuclear and wind power: A China study

Author

Listed:
  • Wang, Like
  • Wang, Yuan
  • Du, Huibin
  • Zuo, Jian
  • Yi Man Li, Rita
  • Zhou, Zhihua
  • Bi, Fenfen
  • Garvlehn, McSimon P.

Abstract

Energy sector is one of biggest contributors to the Greenhouse Gas (GHG) emissions. As a result, it has attracted considerable attention to reduce the GHG emissions of electricity production. Hydro-electric, nuclear and wind power are the top three clean energy in China. In this study, the environmental impacts of these three technologies are analyzed, assessed and compared via a life-cycle assessment approach. The entire life cycle, including the manufacturing, construction, operation and decommissioning stages is examined. Apart from global warming potential (GWP100) caused by GHG emissions, the environmental impacts assessed in this study also included acidification potential (AP), eutrophication potential (EP), photochemical ozone creation potential (POCP) and human toxicity potential (HTP). The results show that wind power technology has the most significant environmental impacts amongst these three clean energies, followed by nuclear power and hydropower. For example, in terms of global warming potential, wind power produces 28.6 ± 3.2 g CO2-eq/kWh of GWP100 throughout its life cycle, which is higher than that of nuclear power (12.4 ± 1.5 g CO2-eq/kWh) and hydropower (3.5 ± 0.4 g CO2-eq/kWh). In addition, this study revealed that the the manufacturing stage is the largest contributor of environmental impacts for wind and hydropower. By contrast, the decommissioning stage is most significant for nuclear power in terms of environmental impacts. The comparative life cycle assessment method proposed in this study provides useful tool for the future environmental assessment of electricity production technologies. Findings of this study provide useful inputs for the sustainable transformation of the energy sector.

Suggested Citation

  • Wang, Like & Wang, Yuan & Du, Huibin & Zuo, Jian & Yi Man Li, Rita & Zhou, Zhihua & Bi, Fenfen & Garvlehn, McSimon P., 2019. "A comparative life-cycle assessment of hydro-, nuclear and wind power: A China study," Applied Energy, Elsevier, vol. 249(C), pages 37-45.
  • Handle: RePEc:eee:appene:v:249:y:2019:i:c:p:37-45
    DOI: 10.1016/j.apenergy.2019.04.099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919307664
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.04.099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stacey L. Dolan & Garvin A. Heath, 2012. "Life Cycle Greenhouse Gas Emissions of Utility‐Scale Wind Power," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 136-154, April.
    2. Nian, Victor, 2015. "Change impact analysis on the life cycle carbon emissions of energy systems – The nuclear example," Applied Energy, Elsevier, vol. 143(C), pages 437-450.
    3. Ardente, Fulvio & Beccali, Marco & Cellura, Maurizio & Lo Brano, Valerio, 2008. "Energy performances and life cycle assessment of an Italian wind farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 200-217, January.
    4. Ethan S. Warner & Garvin A. Heath, 2012. "Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 73-92, April.
    5. Martínez, E. & Jiménez, E. & Blanco, J. & Sanz, F., 2010. "LCA sensitivity analysis of a multi-megawatt wind turbine," Applied Energy, Elsevier, vol. 87(7), pages 2293-2303, July.
    6. Pascale, Andrew & Urmee, Tania & Moore, Andrew, 2011. "Life cycle assessment of a community hydroelectric power system in rural Thailand," Renewable Energy, Elsevier, vol. 36(11), pages 2799-2808.
    7. Tremeac, Brice & Meunier, Francis, 2009. "Life cycle analysis of 4.5Â MW and 250Â W wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2104-2110, October.
    8. Nian, Victor & Chou, S.K. & Su, Bin & Bauly, John, 2014. "Life cycle analysis on carbon emissions from power generation – The nuclear energy example," Applied Energy, Elsevier, vol. 118(C), pages 68-82.
    9. Lenzen, Manfred & Wachsmann, Ulrike, 2004. "Wind turbines in Brazil and Germany: an example of geographical variability in life-cycle assessment," Applied Energy, Elsevier, vol. 77(2), pages 119-130, February.
    10. Turconi, R. & O’Dwyer, C. & Flynn, D. & Astrup, T., 2014. "Emissions from cycling of thermal power plants in electricity systems with high penetration of wind power: Life cycle assessment for Ireland," Applied Energy, Elsevier, vol. 131(C), pages 1-8.
    11. Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
    12. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    13. Hou, Guofu & Sun, Honghang & Jiang, Ziying & Pan, Ziqiang & Wang, Yibo & Zhang, Xiaodan & Zhao, Ying & Yao, Qiang, 2016. "Life cycle assessment of grid-connected photovoltaic power generation from crystalline silicon solar modules in China," Applied Energy, Elsevier, vol. 164(C), pages 882-890.
    14. Michael Whitaker & Garvin A. Heath & Patrick O’Donoughue & Martin Vorum, 2012. "Life Cycle Greenhouse Gas Emissions of Coal‐Fired Electricity Generation," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 53-72, April.
    15. Asdrubali, Francesco & Baldinelli, Giorgio & D’Alessandro, Francesco & Scrucca, Flavio, 2015. "Life cycle assessment of electricity production from renewable energies: Review and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1113-1122.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Yunhong & Wang, Honglei & Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin, 2024. "Stochastic optimization of system configurations and operation of hybrid cascade hydro-wind-photovoltaic with battery for uncertain medium- and long-term load growth," Applied Energy, Elsevier, vol. 364(C).
    2. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Zheng, Shuxian & Zhou, Xuanru & Tan, Zhanglu & Liu, Chan & Hu, Han & Yuan, Hui & Peng, Shengnan & Cai, Xiaomei, 2023. "Assessment of the global energy transition: Based on trade embodied energy analysis," Energy, Elsevier, vol. 273(C).
    4. Gemechu, Eskinder & Kumar, Amit, 2022. "A review of how life cycle assessment has been used to assess the environmental impacts of hydropower energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Li, Qiangfeng & Duan, Huabo & Xie, Minghui & Kang, Peng & Ma, Yi & Zhong, Ruoyu & Gao, Tianming & Zhong, Weiqiong & Wen, Bojie & Bai, Feng & Vuppaladadiyam, Arun K., 2021. "Life cycle assessment and life cycle cost analysis of a 40 MW wind farm with consideration of the infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. Gao, Chengkang & Zhu, Sulong & An, Nan & Na, Hongming & You, Huan & Gao, Chengbo, 2021. "Comprehensive comparison of multiple renewable power generation methods: A combination analysis of life cycle assessment and ecological footprint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    7. Mahmoud G. Hemeida & Ashraf M. Hemeida & Tomonobu Senjyu & Dina Osheba, 2022. "Renewable Energy Resources Technologies and Life Cycle Assessment: Review," Energies, MDPI, vol. 15(24), pages 1-36, December.
    8. Pomponi, Francesco & Hart, Jim, 2021. "The greenhouse gas emissions of nuclear energy – Life cycle assessment of a European pressurised reactor," Applied Energy, Elsevier, vol. 290(C).
    9. João Agra Neto & Mario Orestes Aguirre González & Rajiv Lucas Pereira de Castro & David Cassimiro de Melo & Kezauyn Miranda Aiquoc & Andressa Medeiros Santiso & Rafael Monteiro de Vasconcelos & Lucas , 2024. "Factors Influencing the Decision-Making Process at the End-of-Life Cycle of Onshore Wind Farms: A Systematic Review," Energies, MDPI, vol. 17(4), pages 1-42, February.
    10. Zhang, Changbing & Cao, Wenzhe & Xie, Tingting & Wang, Chongxun & Shen, Chunhe & Wen, Xiankui & Mao, Cheng, 2022. "Operational characteristics and optimization of Hydro-PV power hybrid electricity system," Renewable Energy, Elsevier, vol. 200(C), pages 601-613.
    11. Markéta Šerešová & Jiří Štefanica & Monika Vitvarová & Kristina Zakuciová & Petr Wolf & Vladimír Kočí, 2020. "Life Cycle Performance of Various Energy Sources Used in the Czech Republic," Energies, MDPI, vol. 13(21), pages 1-17, November.
    12. Garrett, Kayla P. & McManamay, Ryan A. & Witt, Adam, 2023. "Harnessing the power of environmental flows: Sustaining river ecosystem integrity while increasing energy potential at hydropower dams," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    13. Li, Jinying & Li, Sisi & Wu, Fan, 2020. "Research on carbon emission reduction benefit of wind power project based on life cycle assessment theory," Renewable Energy, Elsevier, vol. 155(C), pages 456-468.
    14. Martinopoulos, Georgios, 2020. "Are rooftop photovoltaic systems a sustainable solution for Europe? A life cycle impact assessment and cost analysis," Applied Energy, Elsevier, vol. 257(C).
    15. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    16. Yang, Kuang & Liao, Haifan & Xu, Bo & Chen, Qiuxiang & Hou, Zhenghui & Wang, Haijun, 2024. "Data-driven dryout prediction in helical-coiled once-through steam generator: A physics-informed approach leveraging the Buckingham Pi theorem," Energy, Elsevier, vol. 294(C).
    17. Silvestri, Luca & De Santis, Michele, 2024. "Renewable-based load shifting system for demand response to enhance energy-economic-environmental performance of industrial enterprises," Applied Energy, Elsevier, vol. 358(C).
    18. Violeta Motuzienė & Kęstutis Čiuprinskas & Artur Rogoža & Vilūnė Lapinskienė, 2022. "A Review of the Life Cycle Analysis Results for Different Energy Conversion Technologies," Energies, MDPI, vol. 15(22), pages 1-26, November.
    19. Castro, J.S. & Ferreira, J. & Magalhães, I.B. & Jesus Junior, M.M. & Marangon, B.B. & Pereira, A.S.A.P. & Lorentz, J.F. & Gama, R.C.N. & Rodrigues, F.A. & Calijuri, M.L., 2023. "Life cycle assessment and techno-economic analysis for biofuel and biofertilizer recovery as by-products from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    20. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo & Soares, Isabel, 2020. "Probabilistic multicriteria environmental assessment of power plants: A global approach," Applied Energy, Elsevier, vol. 260(C).
    21. Carlo L. Vinoya & Aristotle T. Ubando & Alvin B. Culaba & Wei-Hsin Chen, 2023. "State-of-the-Art Review of Small Modular Reactors," Energies, MDPI, vol. 16(7), pages 1-30, April.
    22. Zhang, Qianxiao & Shah, Syed Ale Raza & Yang, Ling, 2022. "Modeling the effect of disaggregated renewable energies on ecological footprint in E5 economies: Do economic growth and R&D matter?," Applied Energy, Elsevier, vol. 310(C).
    23. Duong Minh Ngoc & Montri Luengchavanon & Pham Thi Anh & Kim Humphreys & Kuaanan Techato, 2022. "Shades of Green: Life Cycle Assessment of a Novel Small-Scale Vertical Axis Wind Turbine Tree," Energies, MDPI, vol. 15(20), pages 1-21, October.
    24. Qi Wu & Shouheng Sun, 2022. "Energy and Environmental Impact of the Promotion of Battery Electric Vehicles in the Context of Banning Gasoline Vehicle Sales," Energies, MDPI, vol. 15(22), pages 1-18, November.
    25. Yingying Du & Hui Huang & Haibin Liu & Jingying Zhao & Qingzhou Yang, 2024. "Life Cycle Assessment of Abandonment of Onshore Wind Power for Hydrogen Production in China," Sustainability, MDPI, vol. 16(13), pages 1-25, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mendecka, Barbara & Lombardi, Lidia, 2019. "Life cycle environmental impacts of wind energy technologies: A review of simplified models and harmonization of the results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 462-480.
    2. Cao, Yijia & Wang, Xifan & Li, Yong & Tan, Yi & Xing, Jianbo & Fan, Ruixiang, 2016. "A comprehensive study on low-carbon impact of distributed generations on regional power grids: A case of Jiangxi provincial power grid in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 766-778.
    3. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Nian, Victor & Liu, Yang & Zhong, Sheng, 2019. "Life cycle cost-benefit analysis of offshore wind energy under the climatic conditions in Southeast Asia – Setting the bottom-line for deployment," Applied Energy, Elsevier, vol. 233, pages 1003-1014.
    5. Asdrubali, Francesco & Baldinelli, Giorgio & D’Alessandro, Francesco & Scrucca, Flavio, 2015. "Life cycle assessment of electricity production from renewable energies: Review and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1113-1122.
    6. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    7. Niklas Andersen & Ola Eriksson & Karl Hillman & Marita Wallhagen, 2016. "Wind Turbines’ End-of-Life: Quantification and Characterisation of Future Waste Materials on a National Level," Energies, MDPI, vol. 9(12), pages 1-24, November.
    8. Savino, Matteo M. & Manzini, Riccardo & Della Selva, Vincenzo & Accorsi, Riccardo, 2017. "A new model for environmental and economic evaluation of renewable energy systems: The case of wind turbines," Applied Energy, Elsevier, vol. 189(C), pages 739-752.
    9. Mahmud, M.A. Parvez & Huda, Nazmul & Farjana, Shahjadi Hisan & Lang, Candace, 2020. "Life-cycle impact assessment of renewable electricity generation systems in the United States," Renewable Energy, Elsevier, vol. 151(C), pages 1028-1045.
    10. Mahmud, M.A. Parvez & Farjana, Shahjadi Hisan, 2022. "Comparative life cycle environmental impact assessment of renewable electricity generation systems: A practical approach towards Europe, North America and Oceania," Renewable Energy, Elsevier, vol. 193(C), pages 1106-1120.
    11. Nian, Victor, 2015. "Change impact analysis on the life cycle carbon emissions of energy systems – The nuclear example," Applied Energy, Elsevier, vol. 143(C), pages 437-450.
    12. Gamarra, A.R. & Banacloche, S. & Lechon, Y. & del Río, P., 2023. "Assessing the sustainability impacts of concentrated solar power deployment in Europe in the context of global value chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    13. Amponsah, Nana Yaw & Troldborg, Mads & Kington, Bethany & Aalders, Inge & Hough, Rupert Lloyd, 2014. "Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 461-475.
    14. Nagashima, Shin & Uchiyama, Yohji & Okajima, Keiichi, 2017. "Hybrid input–output table method for socioeconomic and environmental assessment of a wind power generation system," Applied Energy, Elsevier, vol. 185(P2), pages 1067-1075.
    15. Arvesen, Anders & Hertwich, Edgar G., 2012. "Assessing the life cycle environmental impacts of wind power: A review of present knowledge and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5994-6006.
    16. Ling-Chin, J. & Heidrich, O. & Roskilly, A.P., 2016. "Life cycle assessment (LCA) – from analysing methodology development to introducing an LCA framework for marine photovoltaic (PV) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 352-378.
    17. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo & Soares, Isabel, 2020. "Probabilistic multicriteria environmental assessment of power plants: A global approach," Applied Energy, Elsevier, vol. 260(C).
    18. Xuerong Li & Faliang Gui & Qingpeng Li, 2019. "Can Hydropower Still Be Considered a Clean Energy Source? Compelling Evidence from a Middle-Sized Hydropower Station in China," Sustainability, MDPI, vol. 11(16), pages 1-13, August.
    19. Campos-Guzmán, Verónica & García-Cáscales, M. Socorro & Espinosa, Nieves & Urbina, Antonio, 2019. "Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 343-366.
    20. Gao, Chengkang & Zhu, Sulong & An, Nan & Na, Hongming & You, Huan & Gao, Chengbo, 2021. "Comprehensive comparison of multiple renewable power generation methods: A combination analysis of life cycle assessment and ecological footprint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:249:y:2019:i:c:p:37-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.