IDEAS home Printed from
   My bibliography  Save this article

Subsidies for electricity-generating technologies: A review


  • Badcock, Jeremy
  • Lenzen, Manfred


This paper presents estimates of the extent of subsidisation globally, via selected mechanisms, for a number of different electricity-generating technologies. The technologies covered are coal-fired, nuclear, wind, solar PV, concentrating solar, geothermal, biomass and hydroelectric power. To the knowledge of the authors, this study provides the most complete and comprehensive collation of energy subsidies so far at a global level. Our series of information allows a comparison of subsidies for electricity-generating technologies, based on the respective states of development and deployment during different time periods. To date, on average, hydropower receives the least subsidies per unit of electricity it generates and geothermal and nuclear power receive an equally low level of subsidies per kWh generated. Amongst renewables, wind power has registered a spectacular success story in reducing the need for subsidisation. The same cannot be said for the two solar technologies, and for biomass. Coal-fired power has the highest subsidisation level, despite its high level of global deployment, which is mainly because of external costs due to climate change impacts. Our study demonstrates that accounting for subsidies under an agreed framework can be important for informing future policy decisions on subsidisation.

Suggested Citation

  • Badcock, Jeremy & Lenzen, Manfred, 2010. "Subsidies for electricity-generating technologies: A review," Energy Policy, Elsevier, vol. 38(9), pages 5038-5047, September.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:9:p:5038-5047

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Celik, Ali Naci & Muneer, Tariq & Clarke, Peter, 2009. "A review of installed solar photovoltaic and thermal collector capacities in relation to solar potential for the EU-15," Renewable Energy, Elsevier, vol. 34(3), pages 849-856.
    2. Riedy, Chris & Diesendorf, Mark, 2003. "Financial subsidies to the Australian fossil fuel industry," Energy Policy, Elsevier, vol. 31(2), pages 125-137, January.
    3. Owen, Anthony D., 2006. "Renewable energy: Externality costs as market barriers," Energy Policy, Elsevier, vol. 34(5), pages 632-642, March.
    4. van Beers, Cees & van den Bergh, Jeroen C. J. M., 2001. "Perseverance of perverse subsidies and their impact on trade and environment," Ecological Economics, Elsevier, vol. 36(3), pages 475-486, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Lee, Cheuk Wing & Zhong, Jin, 2015. "Financing and risk management of renewable energy projects with a hybrid bond," Renewable Energy, Elsevier, vol. 75(C), pages 779-787.
    2. Martin, Nigel & Rice, John, 2015. "Improving Australia's renewable energy project policy and planning: A multiple stakeholder analysis," Energy Policy, Elsevier, vol. 84(C), pages 128-141.
    3. Filippo Sgroi & Salvatore Tudisca & Anna Maria Di Trapani & Riccardo Testa & Riccardo Squatrito, 2014. "Efficacy and Efficiency of Italian Energy Policy: The Case of PV Systems in Greenhouse Farms," Energies, MDPI, Open Access Journal, vol. 7(6), pages 1-17, June.
    4. Lin, Boqiang & He, Jiaxin, 2017. "Is biomass power a good choice for governments in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1218-1230.
    5. Gonzalez, Asa O. & Karali, Berna & Wetzstein, Michael E., 2012. "A public policy aid for bioenergy investment: Case study of failed plants," Energy Policy, Elsevier, vol. 51(C), pages 465-473.
    6. repec:eee:enepol:v:109:y:2017:i:c:p:141-153 is not listed on IDEAS
    7. Behrens, Paul & Rodrigues, João F.D. & Brás, Tiago & Silva, Carlos, 2016. "Environmental, economic, and social impacts of feed-in tariffs: A Portuguese perspective 2000–2010," Applied Energy, Elsevier, vol. 173(C), pages 309-319.
    8. Milstein, Irena & Tishler, Asher, 2015. "Can price volatility enhance market power? The case of renewable technologies in competitive electricity markets," Resource and Energy Economics, Elsevier, vol. 41(C), pages 70-90.
    9. Avril, S. & Mansilla, C. & Busson, M. & Lemaire, T., 2012. "Photovoltaic energy policy: Financial estimation and performance comparison of the public support in five representative countries," Energy Policy, Elsevier, vol. 51(C), pages 244-258.
    10. Sarasa-Maestro, Carlos J. & Dufo-López, Rodolfo & Bernal-Agustín, José L., 2013. "Photovoltaic remuneration policies in the European Union," Energy Policy, Elsevier, vol. 55(C), pages 317-328.
    11. Morris, Adele C. & Nivola, Pietro S. & Schultze, Charles L., 2012. "Clean energy: Revisiting the challenges of industrial policy," Energy Economics, Elsevier, vol. 34(S1), pages 34-42.
    12. Pérez-Alonso, J. & Pérez-García, M. & Pasamontes-Romera, M. & Callejón-Ferre, A.J., 2012. "Performance analysis and neural modelling of a greenhouse integrated photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4675-4685.
    13. Burkart, Christopher S. & Arguea, Nestor M., 2012. "Efficient scale for photovoltaic systems and Florida's solar rebate program," Energy Policy, Elsevier, vol. 48(C), pages 470-478.
    14. Jesús Muñoz-Cruzado-Alba & Christian A. Rojas & Samir Kouro & Eduardo Galván Díez, 2016. "Power Production Losses Study by Frequency Regulation in Weak-Grid-Connected Utility-Scale Photovoltaic Plants," Energies, MDPI, Open Access Journal, vol. 9(5), pages 1-21, April.
    15. Milstein, Irena & Tishler, Asher, 2011. "Intermittently renewable energy, optimal capacity mix and prices in a deregulated electricity market," Energy Policy, Elsevier, vol. 39(7), pages 3922-3927, July.
    16. Enrica Cian & Samuel Carrara & Massimo Tavoni, 2014. "Innovation benefits from nuclear phase-out: can they compensate the costs?," Climatic Change, Springer, vol. 123(3), pages 637-650, April.
    17. repec:gam:jeners:v:9:y:2016:i:5:p:317:d:68866 is not listed on IDEAS
    18. Moiseyev, Alexander & Solberg, Birger & Kallio, A. Maarit I., 2014. "The impact of subsidies and carbon pricing on the wood biomass use for energy in the EU," Energy, Elsevier, vol. 76(C), pages 161-167.
    19. Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2011. "Sustainable energy systems: Role of optimization modeling techniques in power generation and supply—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3480-3500.
    20. Riccardo Squatrito & Filippo Sgroi & Salvatore Tudisca & Anna Maria Di Trapani & Riccardo Testa, 2014. "Post Feed-in Scheme Photovoltaic System Feasibility Evaluation in Italy: Sicilian Case Studies," Energies, MDPI, Open Access Journal, vol. 7(11), pages 1-19, November.
    21. repec:eee:rensus:v:81:y:2018:i:p1:p:22-32 is not listed on IDEAS
    22. Jeon, Chanwoong & Lee, Jeongjin & Shin, Juneseuk, 2015. "Optimal subsidy estimation method using system dynamics and the real option model: Photovoltaic technology case," Applied Energy, Elsevier, vol. 142(C), pages 33-43.
    23. Carlos J. Sarasa-Maestro & Rodolfo Dufo-López & José L. Bernal-Agustín, 2016. "Analysis of Photovoltaic Self-Consumption Systems," Energies, MDPI, Open Access Journal, vol. 9(9), pages 1-18, August.
    24. Suna, Demet & Resch, Gustav, 2016. "Is nuclear economical in comparison to renewables?," Energy Policy, Elsevier, vol. 98(C), pages 199-209.
    25. de Melo, Conrado Augustus & Jannuzzi, Gilberto de Martino & Bajay, Sergio Valdir, 2016. "Nonconventional renewable energy governance in Brazil: Lessons to learn from the German experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 222-234.

    More about this item


    Subsidies Electricity generation;


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:9:p:5038-5047. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.