IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v32y2007i11p2167-2186.html
   My bibliography  Save this article

Dynamic exergy analysis for capacity expansion of regional power-generation systems: Case study of far West Texas

Author

Listed:
  • Becerra-Lopez, Humberto R.
  • Golding, Peter

Abstract

The global electricity supply from non-hydro renewables, mainly wind and solar, is currently growing at a high rate, and it is expected that this trend persists. In the near-to-medium term, the power produced by breakthrough fossil fuel technologies might also grow intensively. These expansion patterns can be optimized in a regional context, which translates into a multidimensional problem. As part of the solution, a procedure to determine maximum allowable growth rates for alternative power-generation technologies is developed and exemplified in this paper. The model applies a dynamic exergy analysis based on the cumulative exergy-consumption concept, expanded to include emissions abatement. A Gompertz sigmoid growth is assumed and constrained by both exergetic self-sustenance and regional energy resource availability. Far West Texas is the selected study region. The deployment of alternative technologies (wind turbines, photovoltaics, hybrid solar thermal parabolic troughs, and solid oxide fuel cells) to meet the regional power demand is projected assuming backup capacity by a conventional technology (natural gas combined cycle). The results show that during the next decades the new capacity demand may largely be met by deploying alternative technologies, with a cost in primary resources that can be minimized through a proper allowance for exergy reinvestment.

Suggested Citation

  • Becerra-Lopez, Humberto R. & Golding, Peter, 2007. "Dynamic exergy analysis for capacity expansion of regional power-generation systems: Case study of far West Texas," Energy, Elsevier, vol. 32(11), pages 2167-2186.
  • Handle: RePEc:eee:energy:v:32:y:2007:i:11:p:2167-2186
    DOI: 10.1016/j.energy.2007.04.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544207000758
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Norton, Brian & Eames, Phillip C & Lo, Steve NG, 1998. "Full-energy-chain analysis of greenhouse gas emissions for solar thermal electric power generation systems," Renewable Energy, Elsevier, vol. 15(1), pages 131-136.
    2. Wolsink, Maarten, 1996. "Dutch wind power policy : Stagnating implementation of renewables," Energy Policy, Elsevier, vol. 24(12), pages 1079-1088, December.
    3. Hekkert, Marko P. & Hendriks, Franka H. J. F. & Faaij, Andre P. C. & Neelis, Maarten L., 2005. "Natural gas as an alternative to crude oil in automotive fuel chains well-to-wheel analysis and transition strategy development," Energy Policy, Elsevier, vol. 33(5), pages 579-594, March.
    4. Krewitt, Wolfram, 2002. "External costs of energy--do the answers match the questions?: Looking back at 10 years of ExternE," Energy Policy, Elsevier, vol. 30(10), pages 839-848, August.
    5. Parry, Ian W. H., 2004. "Are emissions permits regressive?," Journal of Environmental Economics and Management, Elsevier, vol. 47(2), pages 364-387, March.
    6. Ayres, Robert U. & Ayres, Leslie W. & Martinás, Katalin, 1998. "Exergy, waste accounting, and life-cycle analysis," Energy, Elsevier, vol. 23(5), pages 355-363.
    7. anonymous, 2003. "Annual Fed report tracks bank fees and services," Financial Update, Federal Reserve Bank of Atlanta, vol. 16(Q 3).
    8. Owen, Anthony D., 2006. "Renewable energy: Externality costs as market barriers," Energy Policy, Elsevier, vol. 34(5), pages 632-642, March.
    9. Ayres, Robert U & Ayres, Leslie W & Warr, Benjamin, 2003. "Exergy, power and work in the US economy, 1900–1998," Energy, Elsevier, vol. 28(3), pages 219-273.
    10. Khan, Faisal I. & Hawboldt, Kelly & Iqbal, M.T., 2005. "Life Cycle Analysis of wind–fuel cell integrated system," Renewable Energy, Elsevier, vol. 30(2), pages 157-177.
    11. Krauter, S & Rüther, R, 2004. "Considerations for the calculation of greenhouse gas reduction by photovoltaic solar energy," Renewable Energy, Elsevier, vol. 29(3), pages 345-355.
    12. Szargut, J. & Stanek, W., 2007. "Thermo-ecological optimization of a solar collector," Energy, Elsevier, vol. 32(4), pages 584-590.
    13. Roth, Ian F. & Ambs, Lawrence L., 2004. "Incorporating externalities into a full cost approach to electric power generation life-cycle costing," Energy, Elsevier, vol. 29(12), pages 2125-2144.
    14. Mortimer, N. D., 1991. "Energy analysis of renewable energy sources," Energy Policy, Elsevier, vol. 19(4), pages 374-385, May.
    15. Rafaj, Peter & Kypreos, Socrates, 2007. "Internalisation of external cost in the power generation sector: Analysis with Global Multi-regional MARKAL model," Energy Policy, Elsevier, vol. 35(2), pages 828-843, February.
    16. Nawaz, I. & Tiwari, G.N., 2006. "Embodied energy analysis of photovoltaic (PV) system based on macro- and micro-level," Energy Policy, Elsevier, vol. 34(17), pages 3144-3152, November.
    17. Singh, Narendra & Kaushik, S.C. & Misra, R.D., 2000. "Exergetic analysis of a solar thermal power system," Renewable Energy, Elsevier, vol. 19(1), pages 135-143.
    18. Michaelis, Peter & Jackson, Tim & Clift, Roland, 1998. "Exergy analysis of the life cycle of steel," Energy, Elsevier, vol. 23(3), pages 213-220.
    19. Mathur, Jyotirmay & Bansal, Narendra Kumar & Wagner, Hermann-Joseph, 2004. "Dynamic energy analysis to assess maximum growth rates in developing power generation capacity: case study of India," Energy Policy, Elsevier, vol. 32(2), pages 281-287, January.
    20. Valero, A., 2006. "Exergy accounting: Capabilities and drawbacks," Energy, Elsevier, vol. 31(1), pages 164-180.
    21. Nakićenović, Nebojsa & Gilli, Paul Viktor & Kurz, Rainer, 1996. "Regional and global exergy and energy efficiencies," Energy, Elsevier, vol. 21(3), pages 223-237.
    22. Schleisner, Lotte, 2000. "Comparison of methodologies for externality assessment," Energy Policy, Elsevier, vol. 28(15), pages 1127-1136, December.
    23. Finnveden, Göran & Östlund, Per, 1997. "Exergies of natural resources in life-cycle assessment and other applications," Energy, Elsevier, vol. 22(9), pages 923-931.
    24. Babiker, Mustafa H. & Metcalf, Gilbert E. & Reilly, John, 2003. "Tax distortions and global climate policy," Journal of Environmental Economics and Management, Elsevier, vol. 46(2), pages 269-287, September.
    25. Schleisner, L, 2000. "Life cycle assessment of a wind farm and related externalities," Renewable Energy, Elsevier, vol. 20(3), pages 279-288.
    26. Dincer, Ibrahim, 2002. "The role of exergy in energy policy making," Energy Policy, Elsevier, vol. 30(2), pages 137-149, January.
    27. Tonon, S. & Brown, M.T. & Luchi, F. & Mirandola, A. & Stoppato, A. & Ulgiati, S., 2006. "An integrated assessment of energy conversion processes by means of thermodynamic, economic and environmental parameters," Energy, Elsevier, vol. 31(1), pages 149-163.
    28. Pehnt, Martin, 2006. "Dynamic life cycle assessment (LCA) of renewable energy technologies," Renewable Energy, Elsevier, vol. 31(1), pages 55-71.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hritonenko, Natali & Yatsenko, Yuri, 2010. "Technological innovations, economic renovation, and anticipation effects," Journal of Mathematical Economics, Elsevier, vol. 46(6), pages 1064-1078, November.
    2. Xydis, G. & Koroneos, C. & Loizidou, M., 2009. "Exergy analysis in a wind speed prognostic model as a wind farm sitting selection tool: A case study in Southern Greece," Applied Energy, Elsevier, vol. 86(11), pages 2411-2420, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    2. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    3. Gasparatos, Alexandros & El-Haram, Mohamed & Horner, Malcolm, 2009. "Assessing the sustainability of the UK society using thermodynamic concepts: Part 2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 956-970, June.
    4. Chen, B. & Chen, G.Q., 2006. "Exergy analysis for resource conversion of the Chinese Society 1993 under the material product system," Energy, Elsevier, vol. 31(8), pages 1115-1150.
    5. Chen, B. & Chen, G.Q., 2007. "Modified ecological footprint accounting and analysis based on embodied exergy--a case study of the Chinese society 1981-2001," Ecological Economics, Elsevier, vol. 61(2-3), pages 355-376, March.
    6. Chen, G.Q. & Qi, Z.H., 2007. "Systems account of societal exergy utilization: China 2003," Ecological Modelling, Elsevier, vol. 208(2), pages 102-118.
    7. Brand-Correa, Lina I. & Steinberger, Julia K., 2017. "A Framework for Decoupling Human Need Satisfaction From Energy Use," Ecological Economics, Elsevier, vol. 141(C), pages 43-52.
    8. Jochem, Patrick & Doll, Claus & Fichtner, Wolf, 2016. "External costs of electric vehicles," MPRA Paper 91602, University Library of Munich, Germany.
    9. Feng, Kuishuang & Hubacek, Klaus & Siu, Yim Ling & Li, Xin, 2014. "The energy and water nexus in Chinese electricity production: A hybrid life cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 342-355.
    10. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
    11. Fahlén, E. & Ahlgren, E.O., 2010. "Accounting for external costs in a study of a Swedish district-heating system - An assessment of environmental policies," Energy Policy, Elsevier, vol. 38(9), pages 4909-4920, September.
    12. Holmgren, Kristina & Amiri, Shahnaz, 2007. "Internalising external costs of electricity and heat production in a municipal energy system," Energy Policy, Elsevier, vol. 35(10), pages 5242-5253, October.
    13. Utlu, Zafer & Hepbasli, Arif, 2007. "A review on analyzing and evaluating the energy utilization efficiency of countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(1), pages 1-29, January.
    14. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2012. "Thermodynamic analysis of human–environment systems: A review focused on industrial ecology," Ecological Modelling, Elsevier, vol. 228(C), pages 76-88.
    15. Chen, G.Q. & Ji, Xi, 2007. "Chemical exergy based evaluation of water quality," Ecological Modelling, Elsevier, vol. 200(1), pages 259-268.
    16. Guevara, Zeus & Domingos, Tiago, 2017. "Three-level decoupling of energy use in Portugal 1995–2010," Energy Policy, Elsevier, vol. 108(C), pages 134-142.
    17. Warr, Benjamin & Ayres, Robert, 2006. "REXS: A forecasting model for assessing the impact of natural resource consumption and technological change on economic growth," Structural Change and Economic Dynamics, Elsevier, vol. 17(3), pages 329-378, September.
    18. Utlu, Zafer & Hepbasli, Arif, 2007. "A review and assessment of the energy utilization efficiency in the Turkish industrial sector using energy and exergy analysis method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1438-1459, September.
    19. Utlu, Zafer & Hepbasli, Arif, 2006. "Estimating the energy and exergy utilization efficiencies for the residential-commercial sector: an application," Energy Policy, Elsevier, vol. 34(10), pages 1097-1105, July.
    20. Gunawardena, U.A.D. Prasanthi, 2010. "Inequalities and externalities of power sector: A case of Broadlands hydropower project in Sri Lanka," Energy Policy, Elsevier, vol. 38(2), pages 726-734, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:32:y:2007:i:11:p:2167-2186. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: http://www.journals.elsevier.com/energy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.