IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v228y2012icp76-88.html
   My bibliography  Save this article

Thermodynamic analysis of human–environment systems: A review focused on industrial ecology

Author

Listed:
  • Liao, Wenjie
  • Heijungs, Reinout
  • Huppes, Gjalt

Abstract

The term Anthropocene, which is used by many scientists to refer to the current era, reflects various environmental issues caused by anthropogenic activities. The energy flows and conversions in the anthroposphere and the anthropogenic impacts on the ecosphere, as two major aspects of the physical part of industrial ecology, are both subject to the laws of thermodynamics. After an introduction to human–environment systems and industrial ecology in the Anthropocene, this review focuses on the role and applications of thermodynamic analysis in industrial ecology based on a thermodynamic definition of human–environment systems at four levels, i.e., the ecosphere (A), the anthroposphere (B), the supply chain (C), and the foreground system (D). It argues that process engineering thermodynamics (at level D) and ecological energetics (at level A) are the most mature applications, and the primary benefit added by thermodynamic analysis to industrial ecology lies in the physical validation and quantitative formulation of thermodynamics. The review also indicates the challenges of using thermodynamic analysis to understand the physical complexity of industrial ecology and to guide sustainability decision-making call for a joint effort by thermodynamic analysis and ecosystems ecology and for more insights from social sciences.

Suggested Citation

  • Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2012. "Thermodynamic analysis of human–environment systems: A review focused on industrial ecology," Ecological Modelling, Elsevier, vol. 228(C), pages 76-88.
  • Handle: RePEc:eee:ecomod:v:228:y:2012:i:c:p:76-88
    DOI: 10.1016/j.ecolmodel.2012.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012000051
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stefan Baumgärtner & Jakob de Swaan Arons, 2003. "Necessity and Inefficiency in the Generation of Waste," Journal of Industrial Ecology, Yale University, vol. 7(2), pages 113-123, April.
    2. Wall, Göran & Sciubba, Enrico & Naso, Vincenzo, 1994. "Exergy use in the Italian society," Energy, Elsevier, vol. 19(12), pages 1267-1274.
    3. Sciubba, Enrico & Ulgiati, Sergio, 2005. "Emergy and exergy analyses: Complementary methods or irreducible ideological options?," Energy, Elsevier, vol. 30(10), pages 1953-1988.
    4. Koroneos, Christopher & Spachos, Thomas & Moussiopoulos, Nikolaos, 2003. "Exergy analysis of renewable energy sources," Renewable Energy, Elsevier, vol. 28(2), pages 295-310.
    5. Ayres, Robert U., 1998. "Eco-thermodynamics: economics and the second law," Ecological Economics, Elsevier, vol. 26(2), pages 189-209, August.
    6. Perrine Chancerel & Christina E.M. Meskers & Christian Hagelüken & Vera Susanne Rotter, 2009. "Assessment of Precious Metal Flows During Preprocessing of Waste Electrical and Electronic Equipment," Journal of Industrial Ecology, Yale University, vol. 13(5), pages 791-810, October.
    7. Wall, Goran, 1987. "Exergy conversion in the Swedish society," Resources and Energy, Elsevier, vol. 9(1), pages 55-73, June.
    8. Ukidwe, Nandan U. & Bakshi, Bhavik R., 2007. "Industrial and ecological cumulative exergy consumption of the United States via the 1997 input–output benchmark model," Energy, Elsevier, vol. 32(9), pages 1560-1592.
    9. Ayres, Robert U. & Warr, Benjamin, 2005. "Accounting for growth: the role of physical work," Structural Change and Economic Dynamics, Elsevier, vol. 16(2), pages 181-209, June.
    10. Bryant, J., 1982. "A thermodynamic approach to economics," Energy Economics, Elsevier, vol. 4(1), pages 36-50, January.
    11. Deepak Sivaraman & Sergio Pacca & Kimberly Mueller & Jessica Lin, 2007. "Comparative Energy, Environmental, and Economic Analysis of Traditional and E‐commerce DVD Rental Networks," Journal of Industrial Ecology, Yale University, vol. 11(3), pages 77-91, July.
    12. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2011. "Is bioethanol a sustainable energy source? An energy-, exergy-, and emergy-based thermodynamic system analysis," Renewable Energy, Elsevier, vol. 36(12), pages 3479-3487.
    13. Rosen, Marc A., 2002. "Assessing energy technologies and environmental impacts with the principles of thermodynamics," Applied Energy, Elsevier, vol. 72(1), pages 427-441, May.
    14. Shu‐Li Huang & Chia‐Wen Chen, 2009. "Urbanization and Socioeconomic Metabolism in Taipei," Journal of Industrial Ecology, Yale University, vol. 13(1), pages 75-93, February.
    15. Lynette Cheah & John Heywood & Randolph Kirchain, 2009. "Aluminum Stock and Flows in U.S. Passenger Vehicles and Implications for Energy Use," Journal of Industrial Ecology, Yale University, vol. 13(5), pages 718-734, October.
    16. Costanza, Robert & Herendeen, Robert A., 1984. "Embodied energy and economic value in the United States economy: 1963, 1967 and 1972," Resources and Energy, Elsevier, vol. 6(2), pages 129-163, June.
    17. Ayres, Robert U., 2004. "On the life cycle metaphor: where ecology and economics diverge," Ecological Economics, Elsevier, vol. 48(4), pages 425-438, April.
    18. Edgar G. Hertwich, 2005. "Consumption and Industrial Ecology," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 1-6, January.
    19. Ayres, Robert U & Ayres, Leslie W & Warr, Benjamin, 2003. "Exergy, power and work in the US economy, 1900–1998," Energy, Elsevier, vol. 28(3), pages 219-273.
    20. Martínez, Amaya & Uche, Javier, 2010. "Chemical exergy assessment of organic matter in a water flow," Energy, Elsevier, vol. 35(1), pages 77-84.
    21. Kyrke Gaudreau & Roydon A. Fraser & Stephen Murphy, 2009. "The Tenuous Use of Exergy as a Measure of Resource Value or Waste Impact," Sustainability, MDPI, vol. 1(4), pages 1-20, December.
    22. Daniel B. Müller & Hans‐Peter Bader & Peter Baccini, 2004. "Long‐term Coordination of Timber Production and Consumption Using a Dynamic Material and Energy Flow Analysis," Journal of Industrial Ecology, Yale University, vol. 8(3), pages 65-88, July.
    23. Warr, Benjamin & Ayres, Robert, 2006. "REXS: A forecasting model for assessing the impact of natural resource consumption and technological change on economic growth," Structural Change and Economic Dynamics, Elsevier, vol. 17(3), pages 329-378, September.
    24. Sciubba, Enrico, 2010. "On the Second-Law inconsistency of Emergy Analysis," Energy, Elsevier, vol. 35(9), pages 3696-3706.
    25. Ílerı́, Arı́f & Gürer, Türker, 1998. "Energy and exergy utilization in Turkey during 1995," Energy, Elsevier, vol. 23(12), pages 1099-1106.
    26. Duan, N. & Liu, X.D. & Dai, J. & Lin, C. & Xia, X.H. & Gao, R.Y. & Wang, Y. & Chen, S.Q. & Yang, J. & Qi, J., 2011. "Evaluating the environmental impacts of an urban wetland park based on emergy accounting and life cycle assessment: A case study in Beijing," Ecological Modelling, Elsevier, vol. 222(2), pages 351-359.
    27. Tim Jackson, 2005. "Live Better by Consuming Less?: Is There a “Double Dividend” in Sustainable Consumption?," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 19-36, January.
    28. Anita Zvolinschi & Signe Kjelstrup & Olav Bolland & Hedzer J. van der Kooi, 2007. "Exergy Sustainability Indicators as a Tool in Industrial Ecology," Journal of Industrial Ecology, Yale University, vol. 11(4), pages 85-98, October.
    29. Rechberger, H. & Graedel, T. E., 2002. "The contemporary European copper cycle: statistical entropy analysis," Ecological Economics, Elsevier, vol. 42(1-2), pages 59-72, August.
    30. Shinichiro Nakamura & Kenichi Nakajima & Yoshie Yoshizawa & Kazuyo Matsubae‐Yokoyama & Tetsuya Nagasaka, 2009. "Analyzing Polyvinyl Chloride in Japan With the Waste Input−Output Material Flow Analysis Model," Journal of Industrial Ecology, Yale University, vol. 13(5), pages 706-717, October.
    31. Brown, M. T. & Herendeen, R. A., 1996. "Embodied energy analysis and EMERGY analysis: a comparative view," Ecological Economics, Elsevier, vol. 19(3), pages 219-235, December.
    32. Schaeffer, Roberto & Wirtshafter, Robert M., 1992. "An exergy analysis of the Brazilian economy: From energy production to final energy use," Energy, Elsevier, vol. 17(9), pages 841-855.
    33. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    34. John R. Ehrenfeld, 2007. "Would Industrial Ecology Exist without Sustainability in the Background?," Journal of Industrial Ecology, Yale University, vol. 11(1), pages 73-84, January.
    35. Kirova-Yordanova, Zornitza, 2010. "Application of the exergy method to environmental impact estimation: The ammonium nitrate production as a case study," Energy, Elsevier, vol. 35(8), pages 3221-3229.
    36. Helmut Haberl, 2001. "The Energetic Metabolism of Societies: Part II: Empirical Examples," Journal of Industrial Ecology, Yale University, vol. 5(2), pages 71-88, April.
    37. Braden Allenby, 2009. "The Industrial Ecology of Emerging Technologies: Complexity and the Reconstruction of the World," Journal of Industrial Ecology, Yale University, vol. 13(2), pages 168-183, April.
    38. Valero, A., 2006. "Exergy accounting: Capabilities and drawbacks," Energy, Elsevier, vol. 31(1), pages 164-180.
    39. Brown, Mark T. & Ulgiati, Sergio, 2010. "Updated evaluation of exergy and emergy driving the geobiosphere: A review and refinement of the emergy baseline," Ecological Modelling, Elsevier, vol. 221(20), pages 2501-2508.
    40. Zhang, Yan & Yang, Zhifeng & Yu, Xiangyi, 2009. "Ecological network and emergy analysis of urban metabolic systems: Model development, and a case study of four Chinese cities," Ecological Modelling, Elsevier, vol. 220(11), pages 1431-1442.
    41. Levin, Simon A. & Clark, William C., 2010. "Toward a Science of Sustainability," Scholarly Articles 9774654, Harvard Kennedy School of Government.
    42. Jørgensen, S.E. & Nors Nielsen, Søren, 2007. "Application of exergy as thermodynamic indicator in ecology," Energy, Elsevier, vol. 32(5), pages 673-685.
    43. International Federation of Institutes for Advanced Studies, 1978. "IFIAS Workshop Report, energy analysis and economics," Resources and Energy, Elsevier, vol. 1(2), pages 151-204, October.
    44. Finnveden, Göran & Östlund, Per, 1997. "Exergies of natural resources in life-cycle assessment and other applications," Energy, Elsevier, vol. 22(9), pages 923-931.
    45. Zhang, Yan & Yang, Zhifeng & Fath, Brian D. & Li, Shengsheng, 2010. "Ecological network analysis of an urban energy metabolic system: Model development, and a case study of four Chinese cities," Ecological Modelling, Elsevier, vol. 221(16), pages 1865-1879.
    46. Sciubba, Enrico, 2003. "Extended exergy accounting applied to energy recovery from waste: The concept of total recycling," Energy, Elsevier, vol. 28(13), pages 1315-1334.
    47. Helmut Haberl, 2001. "The Energetic Metabolism of Societies Part I: Accounting Concepts," Journal of Industrial Ecology, Yale University, vol. 5(1), pages 11-33, January.
    48. Zhang, Yan & Yang, Zhifeng & Liu, Gengyuan & Yu, Xiangyi, 2011. "Emergy analysis of the urban metabolism of Beijing," Ecological Modelling, Elsevier, vol. 222(14), pages 2377-2384.
    49. Hepbasli, Arif, 2008. "A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 593-661, April.
    50. Rosen, M.A., 1992. "Evaluation of energy utilization efficiency in Canada using energy and exergy analyses," Energy, Elsevier, vol. 17(4), pages 339-350.
    51. Lee, Chun-Lin & Huang, Shu-Li & Chan, Shih-Liang, 2009. "Synthesis and spatial dynamics of socio-economic metabolism and land use change of Taipei Metropolitan Region," Ecological Modelling, Elsevier, vol. 220(21), pages 2940-2959.
    52. Wall, Göran, 1990. "Exergy conversion in the Japanese society," Energy, Elsevier, vol. 15(5), pages 435-444.
    53. Chen, G.Q. & Ji, Xi, 2007. "Chemical exergy based evaluation of water quality," Ecological Modelling, Elsevier, vol. 200(1), pages 259-268.
    54. Enrico Sciubba & Federico Zullo, 2011. "Exergy‐Based Population Dynamics: A Thermodynamic View of the Sustainability Concept," Journal of Industrial Ecology, Yale University, vol. 15(2), pages 172-184, April.
    55. Reid Lifset, 2006. "Differing Approaches to Energy Flow Accounting," Journal of Industrial Ecology, Yale University, vol. 10(4), pages 149-150, October.
    56. Ertesvåg, Ivar S & Mielnik, Michal, 2000. "Exergy analysis of the Norwegian society," Energy, Elsevier, vol. 25(10), pages 957-973.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qingling Shi & Xiangzheng Deng & Chenchen Shi & Shiyi Chen, 2015. "Exploration of the Intersectoral Relations Based on Input-Output Tables in the Inland River Basin of China," Sustainability, MDPI, vol. 7(4), pages 1-18, April.
    2. Antonio Valero & César Torres, 2023. "Application of Circular Thermoeconomics to the Diagnosis of Energy Systems," Energies, MDPI, vol. 16(18), pages 1-23, September.
    3. Rocco, Matteo V. & Di Lucchio, Alberto & Colombo, Emanuela, 2017. "Exergy Life Cycle Assessment of electricity production from Waste-to-Energy technology: A Hybrid Input-Output approach," Applied Energy, Elsevier, vol. 194(C), pages 832-844.
    4. Pauline Deutz & Giuseppe Ioppolo, 2015. "From Theory to Practice: Enhancing the Potential Policy Impact of Industrial Ecology," Sustainability, MDPI, vol. 7(2), pages 1-15, February.
    5. Goran Finnveden & Yevgeniya Arushanyan & Miguel Brandão, 2016. "Exergy as a Measure of Resource Use in Life Cycle Assessment and Other Sustainability Assessment Tools," Resources, MDPI, vol. 5(3), pages 1-11, June.
    6. Jørgensen, Sven E. & Nielsen, Søren Nors & Fath, Brian D., 2016. "Recent progress in systems ecology," Ecological Modelling, Elsevier, vol. 319(C), pages 112-118.
    7. Saladini, Fabrizio & Gopalakrishnan, Varsha & Bastianoni, Simone & Bakshi, Bhavik R., 2018. "Synergies between industry and nature – An emergy evaluation of a biodiesel production system integrated with ecological systems," Ecosystem Services, Elsevier, vol. 30(PB), pages 257-266.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, G.Q. & Qi, Z.H., 2007. "Systems account of societal exergy utilization: China 2003," Ecological Modelling, Elsevier, vol. 208(2), pages 102-118.
    2. Chen, G.Q. & Ji, Xi, 2007. "Chemical exergy based evaluation of water quality," Ecological Modelling, Elsevier, vol. 200(1), pages 259-268.
    3. Sousa, Tânia & Brockway, Paul E. & Cullen, Jonathan M. & Henriques, Sofia Teives & Miller, Jack & Serrenho, André Cabrera & Domingos, Tiago, 2017. "The Need for Robust, Consistent Methods in Societal Exergy Accounting," Ecological Economics, Elsevier, vol. 141(C), pages 11-21.
    4. Hoang, Viet-Ngu & Alauddin, Mohammad, 2009. "Analysis of Agricultural Sustainability: A Review of Exergy Methodologies and Their Application in OECD," MPRA Paper 90406, University Library of Munich, Germany, revised 15 Mar 2010.
    5. Utlu, Zafer & Hepbasli, Arif, 2008. "Energetic and exergetic assessment of the industrial sector at varying dead (reference) state temperatures: A review with an illustrative example," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1277-1301, June.
    6. Chen, G.Q. & Jiang, M.M. & Yang, Z.F. & Chen, B. & Ji, Xi & Zhou, J.B., 2009. "Exergetic assessment for ecological economic system: Chinese agriculture," Ecological Modelling, Elsevier, vol. 220(3), pages 397-410.
    7. Serrenho, André Cabrera & Warr, Benjamin & Sousa, Tânia & Ayres, Robert U. & Domingos, Tiago, 2016. "Structure and dynamics of useful work along the agriculture-industry-services transition: Portugal from 1856 to 2009," Structural Change and Economic Dynamics, Elsevier, vol. 36(C), pages 1-21.
    8. Saidur, R. & Sattar, M.A. & Masjuki, H.H. & Abdessalam, H. & Shahruan, B.S., 2007. "Energy and exergy analysis at the utility and commercial sectors of Malaysia," Energy Policy, Elsevier, vol. 35(3), pages 1956-1966, March.
    9. Warr, Benjamin & Schandl, Heinz & Ayres, Robert U., 2008. "Long term trends in resource exergy consumption and useful work supplies in the UK, 1900 to 2000," Ecological Economics, Elsevier, vol. 68(1-2), pages 126-140, December.
    10. Utlu, Zafer & Hepbasli, Arif, 2007. "A review on analyzing and evaluating the energy utilization efficiency of countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(1), pages 1-29, January.
    11. Warr, Benjamin & Ayres, Robert & Eisenmenger, Nina & Krausmann, Fridolin & Schandl, Heinz, 2010. "Energy use and economic development: A comparative analysis of useful work supply in Austria, Japan, the United Kingdom and the US during 100Â years of economic growth," Ecological Economics, Elsevier, vol. 69(10), pages 1904-1917, August.
    12. Utlu, Zafer & Hepbasli, Arif, 2007. "A review and assessment of the energy utilization efficiency in the Turkish industrial sector using energy and exergy analysis method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1438-1459, September.
    13. Chen, B. & Chen, G.Q., 2006. "Exergy analysis for resource conversion of the Chinese Society 1993 under the material product system," Energy, Elsevier, vol. 31(8), pages 1115-1150.
    14. Chen, G.Q. & Chen, B., 2007. "Resource analysis of the Chinese society 1980-2002 based on exergy--Part 1: Fossil fuels and energy minerals," Energy Policy, Elsevier, vol. 35(4), pages 2038-2050, April.
    15. Utlu, Zafer & Hepbasli, Arif, 2007. "Assessment of the Turkish utility sector through energy and exergy analyses," Energy Policy, Elsevier, vol. 35(10), pages 5012-5020, October.
    16. Hepbasli, Arif & Utlu, Zafer, 2004. "Evaluating the energy utilization efficiency of Turkey's renewable energy sources during 2001," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(3), pages 237-255, June.
    17. Chen, B. & Chen, G.Q., 2007. "Modified ecological footprint accounting and analysis based on embodied exergy--a case study of the Chinese society 1981-2001," Ecological Economics, Elsevier, vol. 61(2-3), pages 355-376, March.
    18. Dai, Jing & Fath, Brian & Chen, Bin, 2012. "Constructing a network of the social-economic consumption system of China using extended exergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4796-4808.
    19. Jadhao, Sachin B. & Pandit, Aniruddha B. & Bakshi, Bhavik R., 2017. "The evolving metabolism of a developing economy: India’s exergy flows over four decades," Applied Energy, Elsevier, vol. 206(C), pages 851-857.
    20. Ertesvåg, Ivar S, 2001. "Society exergy analysis: a comparison of different societies," Energy, Elsevier, vol. 26(3), pages 253-270.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:228:y:2012:i:c:p:76-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.