IDEAS home Printed from
   My bibliography  Save this article

Exergy, power and work in the US economy, 1900–1998


  • Ayres, Robert U
  • Ayres, Leslie W
  • Warr, Benjamin


Conventional economic growth theory assumes that technological progress is exogenous and that resource consumption is a consequence, not a cause, of growth. The reality is different and more complex. A ‘growth engine’ is a positive feedback loop involving declining costs of inputs and increasing demand for lower priced outputs, which then drives costs down further, thanks to economies of scale and learning effects. In a competitive environment prices follow. The most important ‘growth engine’ of the first industrial revolution was dependent on coal and steam power. The feedback operated through rapidly declining fossil fuel and mechanical power costs. The advent of electric power, in growing quantities and declining cost, has triggered the development of a whole range of new products and industries, including electric light, radio and television, moving pictures, and the whole modern information sector. The purpose of this paper is to reformulate the idea of the ‘growth engine’ in terms of the service provided by energy inputs, namely ‘useful work’, defined as the product of energy (exergy) inputs multiplied by a conversion efficiency. We attempt here to reconstruct the useful work performed in the US economy during the twentieth century. Some economic implications are indicated very briefly.

Suggested Citation

  • Ayres, Robert U & Ayres, Leslie W & Warr, Benjamin, 2003. "Exergy, power and work in the US economy, 1900–1998," Energy, Elsevier, vol. 28(3), pages 219-273.
  • Handle: RePEc:eee:energy:v:28:y:2003:i:3:p:219-273 DOI: 10.1016/S0360-5442(02)00089-0

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. J. Daniel Khazzoom, 1987. "Energy Saving Resulting from the Adoption of More Efficient Appliances," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 85-89.
    2. Jorgenson, Dale W, 1996. "Empirical Studies of Depreciation," Economic Inquiry, Western Economic Association International, vol. 34(1), pages 24-42, January.
    3. J. Daniel Khazzoom, 1980. "Economic Implications of Mandated Efficiency in Standards for Household Appliances," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 21-40.
    4. Brookes, L. G., 1992. "Energy efficiency and economic fallacies: a reply," Energy Policy, Elsevier, vol. 20(5), pages 390-392, May.
    5. Ayres, Robert U. & Ayres, Leslie W. & Martinás, Katalin, 1998. "Exergy, waste accounting, and life-cycle analysis," Energy, Elsevier, vol. 23(5), pages 355-363.
    6. William D. Nordhaus, 1996. "Do Real-Output and Real-Wage Measures Capture Reality? The History of Lighting Suggests Not," NBER Chapters,in: The Economics of New Goods, pages 27-70 National Bureau of Economic Research, Inc.
    7. Brookes, L. G., 1993. "Energy efficiency fallacies: the debate concluded," Energy Policy, Elsevier, vol. 21(4), pages 346-347, April.
    8. Herring, Horace, 1999. "Does energy efficiency save energy? The debate and its consequences," Applied Energy, Elsevier, vol. 63(3), pages 209-226, July.
    9. Robert Ayres, 1998. "Towards a Disequilibrium Theory of Endogenous Economic Growth," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 11(3), pages 289-300, April.
    10. Harty D. Saunders, 1992. "The Khazzoom-Brookes Postulate and Neoclassical Growth," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 131-148.
    Full references (including those not matched with items on IDEAS)

    More about this item


    This item is featured on the following reading lists or Wikipedia pages:
    1. Productivity improving technologies in Wikipedia English ne '')
    2. Electrification in Wikipedia English ne '')


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:28:y:2003:i:3:p:219-273. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.