IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i8p3221-3229.html
   My bibliography  Save this article

Application of the exergy method to environmental impact estimation: The ammonium nitrate production as a case study

Author

Listed:
  • Kirova-Yordanova, Zornitza

Abstract

The exergy method is used to compare different production processes and various methods for emission abatement with respect to their overall environmental impact. Some ammonium nitrate production processes are studied as examples, because the pollutants (ammonia and ammonium nitrate), emitted from these processes into the air and/or into the water, are really a feedstock and a product from the production process. Therefore, the essential result of the waste flows treatment is the recycling of the pollutants (ammonia and ammonium nitrate) back into the production process, decreasing simultaneously the exergy input and cumulative exergy consumption

Suggested Citation

  • Kirova-Yordanova, Zornitza, 2010. "Application of the exergy method to environmental impact estimation: The ammonium nitrate production as a case study," Energy, Elsevier, vol. 35(8), pages 3221-3229.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:8:p:3221-3229
    DOI: 10.1016/j.energy.2010.03.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210001970
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.03.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kirova-Yordanova, Zornitza, 2011. "Application of the exergy method to the environmental impact estimation: The nitric acid production as a case study," Energy, Elsevier, vol. 36(6), pages 3733-3744.
    2. Kirova-Yordanova, Zornitza, 2017. "Exergy-based estimation and comparison of urea and ammonium nitrate production efficiency and environmental impact," Energy, Elsevier, vol. 140(P1), pages 158-169.
    3. Tzanakakis, V.A. & Angelakis, A.N., 2011. "Chemical exergy as a unified and objective indicator in the assessment and optimization of land treatment systems," Ecological Modelling, Elsevier, vol. 222(17), pages 3082-3091.
    4. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2012. "Thermodynamic analysis of human–environment systems: A review focused on industrial ecology," Ecological Modelling, Elsevier, vol. 228(C), pages 76-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:8:p:3221-3229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.