IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i17p3082-3091.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Chemical exergy as a unified and objective indicator in the assessment and optimization of land treatment systems

Author

Listed:
  • Tzanakakis, V.A.
  • Angelakis, A.N.

Abstract

The thermodynamic concept of chemical exergy is introduced in land treatment systems (LTS) in order to develop unified and objective indicators for the assessment of plant species, in terms of biomass production, treatment efficiency, and potential impacts to the environment arising from specific pollutants in the soil. For the purposes of this study, data from a three-year-field trial of four different LTS (planted with different plant species: Acacia cyanophylla syn: A. saligna, Eucalyptus camaldulensis, Populus nigra, and Arundo donax) were collected and analysed. All species received partially treated domestic wastewater based on their water requirements. Results showed that chemical exergy could be used as a common platform in the assessment of LTS. With this concept, plant biomass, applied effluent, and changes in soil properties due to effluent application, were assessed using a single exergetic indicator. It was found that chemical exergy approach presented in this study provides a unified and objective assessment of the effluent quality and the changes in the properties of soil, since the calculations were based on the concentration and the chemical exergy of all parameters considered, in accordance to the laws of thermodynamics and without the need of using subjective weighted factors for each parameter. This is an important advantage, compared to the other holistic approaches, which allows consistent and overall comparisons among different plant species as well as comparisons between the results obtained and the existing water quality standards. Furthermore, insights into the efficiency with which plant species used the applied wastewater were also gained through the chemical exergy use efficiency (CEUE), the calculation of which was based on the chemical exergy additions due to effluent application and the chemical exergy stored in plant biomass. Overall, the results obtained in this study suggested that the chemical exergy concept would help in the development of unified and objective indicators for the successful selection of plant species in LTS. It appears that chemical exergy and exergy as a whole can offer more than just a simple description of LTS, in fact, variations in the exergy flow within these systems may provide a much better understanding of LTS in the scope of a broader theoretical framework. However, at the present time, the exergy concept is still not applicable in the assessment and optimization of LTS. To increase its acceptance further research is needed, especially in the area of environmental impacts.

Suggested Citation

  • Tzanakakis, V.A. & Angelakis, A.N., 2011. "Chemical exergy as a unified and objective indicator in the assessment and optimization of land treatment systems," Ecological Modelling, Elsevier, vol. 222(17), pages 3082-3091.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:17:p:3082-3091
    DOI: 10.1016/j.ecolmodel.2011.06.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438001100367X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.06.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sciubba, Enrico & Ulgiati, Sergio, 2005. "Emergy and exergy analyses: Complementary methods or irreducible ideological options?," Energy, Elsevier, vol. 30(10), pages 1953-1988.
    2. Rosen, Marc A., 2002. "Assessing energy technologies and environmental impacts with the principles of thermodynamics," Applied Energy, Elsevier, vol. 72(1), pages 427-441, May.
    3. Morris, David R. & Szargut, Jan, 1986. "Standard chemical exergy of some elements and compounds on the planet earth," Energy, Elsevier, vol. 11(8), pages 733-755.
    4. Dincer, Ibrahim & Rosen, Marc A., 2005. "Thermodynamic aspects of renewables and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(2), pages 169-189, April.
    5. Jørgensen, S.E. & Nors Nielsen, Søren, 2007. "Application of exergy as thermodynamic indicator in ecology," Energy, Elsevier, vol. 32(5), pages 673-685.
    6. Salas, F. & Marcos, C. & Pérez-Ruzafa, A & Marques, J.C., 2005. "Application of the exergy index as ecological indicator of organically enrichment areas in the Mar Menor lagoon (south-eastern Spain)," Energy, Elsevier, vol. 30(13), pages 2505-2522.
    7. Tsatsaronis, George, 2007. "Definitions and nomenclature in exergy analysis and exergoeconomics," Energy, Elsevier, vol. 32(4), pages 249-253.
    8. Kirova-Yordanova, Zornitza, 2010. "Application of the exergy method to environmental impact estimation: The ammonium nitrate production as a case study," Energy, Elsevier, vol. 35(8), pages 3221-3229.
    9. Chen, G.Q. & Ji, Xi, 2007. "Chemical exergy based evaluation of water quality," Ecological Modelling, Elsevier, vol. 200(1), pages 259-268.
    10. Bouwer, Herman, 2000. "Integrated water management: emerging issues and challenges," Agricultural Water Management, Elsevier, vol. 45(3), pages 217-228, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Y.W. & Chen, M.Q. & Li, Y. & Guo, J., 2016. "Modeling of chemical exergy of agricultural biomass using improved general regression neural network," Energy, Elsevier, vol. 114(C), pages 1164-1175.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2012. "Thermodynamic analysis of human–environment systems: A review focused on industrial ecology," Ecological Modelling, Elsevier, vol. 228(C), pages 76-88.
    2. Ji, Xi & Chen, G.Q. & Chen, B. & Jiang, M.M., 2009. "Exergy-based assessment for waste gas emissions from Chinese transportation," Energy Policy, Elsevier, vol. 37(6), pages 2231-2240, June.
    3. Chen, G.Q. & Ji, Xi, 2007. "Chemical exergy based evaluation of water quality," Ecological Modelling, Elsevier, vol. 200(1), pages 259-268.
    4. Zhang, Bo & Chen, G.Q. & Xia, X.H. & Li, S.C. & Chen, Z.M. & Ji, Xi, 2012. "Environmental emissions by Chinese industry: Exergy-based unifying assessment," Energy Policy, Elsevier, vol. 45(C), pages 490-501.
    5. Nielsen, S.N. & Müller, F., 2009. "Understanding the functional principles of nature—Proposing another type of ecosystem services," Ecological Modelling, Elsevier, vol. 220(16), pages 1913-1925.
    6. Chen, G.Q. & Jiang, M.M. & Yang, Z.F. & Chen, B. & Ji, Xi & Zhou, J.B., 2009. "Exergetic assessment for ecological economic system: Chinese agriculture," Ecological Modelling, Elsevier, vol. 220(3), pages 397-410.
    7. Christoph Sejkora & Lisa Kühberger & Fabian Radner & Alexander Trattner & Thomas Kienberger, 2020. "Exergy as Criteria for Efficient Energy Systems—A Spatially Resolved Comparison of the Current Exergy Consumption, the Current Useful Exergy Demand and Renewable Exergy Potential," Energies, MDPI, vol. 13(4), pages 1-51, February.
    8. Zhang, Bo & Chen, G.Q., 2010. "Physical sustainability assessment for the China society: Exergy-based systems account for resources use and environmental emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1527-1545, August.
    9. Hoang, Viet-Ngu & Rao, D.S. Prasada, 2010. "Measuring and decomposing sustainable efficiency in agricultural production: A cumulative exergy balance approach," Ecological Economics, Elsevier, vol. 69(9), pages 1765-1776, July.
    10. Daissy Lorena Restrepo-Serna & Jimmy Anderson Martínez-Ruano & Carlos Ariel Cardona-Alzate, 2018. "Energy Efficiency of Biorefinery Schemes Using Sugarcane Bagasse as Raw Material," Energies, MDPI, vol. 11(12), pages 1-12, December.
    11. Redha, Adel Mohammed & Dincer, Ibrahim & Gadalla, Mohamed, 2011. "Thermodynamic performance assessment of wind energy systems: An application," Energy, Elsevier, vol. 36(7), pages 4002-4010.
    12. Koo, Taehyung & Kim, Young Sang & Lee, Young Duk & Yu, Sangseok & Lee, Dong Keun & Ahn, Kook Young, 2021. "Exergetic evaluation of operation results of 5-kW-class SOFC-HCCI engine hybrid power generation system," Applied Energy, Elsevier, vol. 295(C).
    13. Torío, H. & Schmidt, D., 2010. "Framework for analysis of solar energy systems in the built environment from an exergy perspective," Renewable Energy, Elsevier, vol. 35(12), pages 2689-2697.
    14. Turan, Onder & Aydin, Hakan, 2014. "Exergetic and exergo-economic analyses of an aero-derivative gas turbine engine," Energy, Elsevier, vol. 74(C), pages 638-650.
    15. Whiting, Kai & Carmona, Luis Gabriel & Sousa, Tânia, 2017. "A review of the use of exergy to evaluate the sustainability of fossil fuels and non-fuel mineral depletion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 202-211.
    16. Kyrke Gaudreau & Roydon A. Fraser & Stephen Murphy, 2012. "The Characteristics of the Exergy Reference Environment and Its Implications for Sustainability-Based Decision-Making," Energies, MDPI, vol. 5(7), pages 1-17, July.
    17. Hoang, Viet-Ngu & Alauddin, Mohammad, 2009. "Analysis of Agricultural Sustainability: A Review of Exergy Methodologies and Their Application in OECD," MPRA Paper 90406, University Library of Munich, Germany, revised 15 Mar 2010.
    18. Bo Zhang & Suping Peng & Xiangyang Xu & Lijie Wang, 2011. "Embodiment Analysis for Greenhouse Gas Emissions by Chinese Economy Based on Global Thermodynamic Potentials," Energies, MDPI, vol. 4(11), pages 1-19, November.
    19. Kanoglu, Mehmet & Dincer, Ibrahim & Rosen, Marc A., 2007. "Understanding energy and exergy efficiencies for improved energy management in power plants," Energy Policy, Elsevier, vol. 35(7), pages 3967-3978, July.
    20. Chen, Quan & Zhao, Qian & Chen, Pimao & Lu, Hongfang, 2018. "Effect of exotic cordgrass Spartina alterniflora on the eco-exergy based thermodynamic health of the macrobenthic faunal community in mangrove wetlands," Ecological Modelling, Elsevier, vol. 385(C), pages 106-113.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:17:p:3082-3091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.