IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v295y2021ics0306261921004979.html
   My bibliography  Save this article

Exergetic evaluation of operation results of 5-kW-class SOFC-HCCI engine hybrid power generation system

Author

Listed:
  • Koo, Taehyung
  • Kim, Young Sang
  • Lee, Young Duk
  • Yu, Sangseok
  • Lee, Dong Keun
  • Ahn, Kook Young

Abstract

A solid oxide fuel cell (SOFC)-based hybrid power generation system using homogeneous charge compression ignition (HCCI) was previously proposed, based on which a proof-of-concept test has already been conducted by the Korea Institute of Machinery and Materials. In this study, energy and exergy analyses were performed to evaluate the experimental data obtained from the proof-of-concept test of the SOFC-HCCI engine hybrid system. In the analyses, particular attention is paid to the SOFC stack, HCCI engine, balance of plant (BOP) hot-box subsections and, accordingly, the energy and exergy flows within and between the above subsections. For the BOP hot-box, the energy and exergy analyses reveal different results. The energy analysis demonstrated that 75.1% of the transferred heat was recovered by the BOP components and pipes; only 25% of the heat, i.e., 638 W, was lost. However, the exergy analysis identified that only 35.1% of the transferred exergy was recovered; thus, 64.9% of the exergy was destroyed. Based on the energy and exergy analysis results, it is observed that the amount of exergy destruction exceeds the heat loss as the latter contributes to the former; this is in addition to the exergy destruction due to the irreversibility of the heat transfer between the components located in the BOP hot box. Based on the analyses of the entire system, the various heat losses and exergy destruction are quantitatively identified. In particular, significant heat loss and exergy destruction occur in the engine, additional burner, and BOP components. To improve the efficiency of the system, the insulation of the system can be reinforced, thereby reducing heat loss and exergy destruction and burner usage can be minimized. This suggests that the heat losses from the system components, mostly in the HCCI engine, should be reduced or reused to improve the overall efficiency of the system.

Suggested Citation

  • Koo, Taehyung & Kim, Young Sang & Lee, Young Duk & Yu, Sangseok & Lee, Dong Keun & Ahn, Kook Young, 2021. "Exergetic evaluation of operation results of 5-kW-class SOFC-HCCI engine hybrid power generation system," Applied Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:appene:v:295:y:2021:i:c:s0306261921004979
    DOI: 10.1016/j.apenergy.2021.117037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921004979
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Facci, Andrea L. & Cigolotti, Viviana & Jannelli, Elio & Ubertini, Stefano, 2017. "Technical and economic assessment of a SOFC-based energy system for combined cooling, heating and power," Applied Energy, Elsevier, vol. 192(C), pages 563-574.
    2. Schöffer, S.I. & Klein, S.A. & Aravind, P.V. & Pecnik, R., 2021. "A solid oxide fuel cell- supercritical carbon dioxide Brayton cycle hybrid system," Applied Energy, Elsevier, vol. 283(C).
    3. Wakui, Tetsuya & Yokoyama, Ryohei & Shimizu, Ken-ichi, 2010. "Suitable operational strategy for power interchange operation using multiple residential SOFC (solid oxide fuel cell) cogeneration systems," Energy, Elsevier, vol. 35(2), pages 740-750.
    4. D.F. Chuahy, Flavio & Kokjohn, Sage L., 2019. "Solid oxide fuel cell and advanced combustion engine combined cycle: A pathway to 70% electrical efficiency," Applied Energy, Elsevier, vol. 235(C), pages 391-408.
    5. Siefert, Nicholas S. & Litster, Shawn, 2013. "Exergy and economic analyses of advanced IGCC–CCS and IGFC–CCS power plants," Applied Energy, Elsevier, vol. 107(C), pages 315-328.
    6. Choudhury, Arnab & Chandra, H. & Arora, A., 2013. "Application of solid oxide fuel cell technology for power generation—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 430-442.
    7. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
    8. Kang, Sanggyu & Ahn, Kook-Young, 2017. "Dynamic modeling of solid oxide fuel cell and engine hybrid system for distributed power generation," Applied Energy, Elsevier, vol. 195(C), pages 1086-1099.
    9. Choi, Wonjae & Kim, Jaehyun & Kim, Yongtae & Kim, Seonyeob & Oh, Sechul & Song, Han Ho, 2018. "Experimental study of homogeneous charge compression ignition engine operation fuelled by emulated solid oxide fuel cell anode off-gas," Applied Energy, Elsevier, vol. 229(C), pages 42-62.
    10. Kim, Young Sang & Lee, Young Duk & Ahn, Kook Young, 2020. "System integration and proof-of-concept test results of SOFC–engine hybrid power generation system," Applied Energy, Elsevier, vol. 277(C).
    11. Kim, Jaehyun & Kim, Yongtae & Choi, Wonjae & Ahn, Kook Young & Song, Han Ho, 2020. "Analysis on the operating performance of 5-kW class solid oxide fuel cell-internal combustion engine hybrid system using spark-assisted ignition," Applied Energy, Elsevier, vol. 260(C).
    12. Morris, David R. & Szargut, Jan, 1986. "Standard chemical exergy of some elements and compounds on the planet earth," Energy, Elsevier, vol. 11(8), pages 733-755.
    13. Tsatsaronis, George, 2007. "Definitions and nomenclature in exergy analysis and exergoeconomics," Energy, Elsevier, vol. 32(4), pages 249-253.
    14. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    15. Boyano, A. & Blanco-Marigorta, A.M. & Morosuk, T. & Tsatsaronis, G., 2011. "Exergoenvironmental analysis of a steam methane reforming process for hydrogen production," Energy, Elsevier, vol. 36(4), pages 2202-2214.
    16. Tao, Y.B. & He, Y.L. & Tao, W.Q., 2010. "Exergetic analysis of transcritical CO2 residential air-conditioning system based on experimental data," Applied Energy, Elsevier, vol. 87(10), pages 3065-3072, October.
    17. Tsatsaronis, George & Morosuk, Tatiana & Koch, Daniela & Sorgenfrei, Max, 2013. "Understanding the thermodynamic inefficiencies in combustion processes," Energy, Elsevier, vol. 62(C), pages 3-11.
    18. Petrakopoulou, Fontina & Lee, Young Duk & Tsatsaronis, George, 2014. "Simulation and exergetic evaluation of CO2 capture in a solid-oxide fuel-cell combined-cycle power plant," Applied Energy, Elsevier, vol. 114(C), pages 417-425.
    19. Choi, Wonjae & Kim, Jaehyun & Kim, Yongtae & Song, Han Ho, 2019. "Solid oxide fuel cell operation in a solid oxide fuel cell–internal combustion engine hybrid system and the design point performance of the hybrid system," Applied Energy, Elsevier, vol. 254(C).
    20. Ghorbani, Sh. & Khoshgoftar-Manesh, M.H. & Nourpour, M. & Blanco-Marigorta, A.M., 2020. "Exergoeconomic and exergoenvironmental analyses of an integrated SOFC-GT-ORC hybrid system," Energy, Elsevier, vol. 206(C).
    21. Azoumah, Y. & Blin, J. & Daho, T., 2009. "Exergy efficiency applied for the performance optimization of a direct injection compression ignition (CI) engine using biofuels," Renewable Energy, Elsevier, vol. 34(6), pages 1494-1500.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roy, Dibyendu & Samanta, Samiran & Roy, Sumit & Smallbone, Andrew & Roskilly, Anthony Paul, 2023. "Multi-objective optimisation of a power generation system integrating solid oxide fuel cell and recuperated supercritical carbon dioxide cycle," Energy, Elsevier, vol. 281(C).
    2. Chehrmonavari, Hamed & Kakaee, Amirhasan & Hosseini, Seyed Ehsan & Desideri, Umberto & Tsatsaronis, George & Floerchinger, Gus & Braun, Robert & Paykani, Amin, 2023. "Hybridizing solid oxide fuel cells with internal combustion engines for power and propulsion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    3. Samanta, Samiran & Roy, Dibyendu & Roy, Sumit & Smallbone, Andrew & Roskilly, Anthony Paul, 2023. "Techno-economic analysis of a fuel-cell driven integrated energy hub for decarbonising transportation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    4. Guo, Meiting & Ru, Xiao & Yang, Lin & Ni, Meng & Lin, Zijing, 2022. "Effects of methane steam reforming on the mechanical stability of solid oxide fuel cell stack," Applied Energy, Elsevier, vol. 322(C).
    5. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi, 2023. "Comprehensive sustainability assessment of a novel solar-driven PEMEC-SOFC-based combined cooling, heating, power, and storage (CCHPS) system based on life cycle method," Energy, Elsevier, vol. 265(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chehrmonavari, Hamed & Kakaee, Amirhasan & Hosseini, Seyed Ehsan & Desideri, Umberto & Tsatsaronis, George & Floerchinger, Gus & Braun, Robert & Paykani, Amin, 2023. "Hybridizing solid oxide fuel cells with internal combustion engines for power and propulsion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    2. Kim, Young Sang & Lee, Young Duk & Ahn, Kook Young, 2020. "System integration and proof-of-concept test results of SOFC–engine hybrid power generation system," Applied Energy, Elsevier, vol. 277(C).
    3. Koo, Taehyung & Kim, Young Sang & Lee, Dongkeun & Yu, Sangseok & Lee, Young Duk, 2021. "System simulation and exergetic analysis of solid oxide fuel cell power generation system with cascade configuration," Energy, Elsevier, vol. 214(C).
    4. Sapra, Harsh & Stam, Jelle & Reurings, Jeroen & van Biert, Lindert & van Sluijs, Wim & de Vos, Peter & Visser, Klaas & Vellayani, Aravind Purushothaman & Hopman, Hans, 2021. "Integration of solid oxide fuel cell and internal combustion engine for maritime applications," Applied Energy, Elsevier, vol. 281(C).
    5. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
    6. Kim, Jaehyun & Kim, Yongtae & Choi, Wonjae & Ahn, Kook Young & Song, Han Ho, 2020. "Analysis on the operating performance of 5-kW class solid oxide fuel cell-internal combustion engine hybrid system using spark-assisted ignition," Applied Energy, Elsevier, vol. 260(C).
    7. Cho, Mingyu & Kim, Yongtae & Ho Song, Han, 2022. "Solid oxide fuel cell–internal combustion engine hybrid system utilizing an internal combustion engine for anode off-gas recirculation, external reforming, and additional power generation," Applied Energy, Elsevier, vol. 328(C).
    8. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    9. Gürtürk, Mert & Oztop, Hakan F. & Hepbasli, Arif, 2015. "Comparison of exergoeconomic analysis of two different perlite expansion furnaces," Energy, Elsevier, vol. 80(C), pages 589-598.
    10. Restrepo, Álvaro & Bazzo, Edson, 2016. "Co-firing: An exergoenvironmental analysis applied to power plants modified for burning coal and rice straw," Renewable Energy, Elsevier, vol. 91(C), pages 107-119.
    11. Adrian Bejan & George Tsatsaronis, 2021. "Purpose in Thermodynamics," Energies, MDPI, vol. 14(2), pages 1-25, January.
    12. David Diskin & Leonid Tartakovsky, 2020. "Efficiency at Maximum Power of the Low-Dissipation Hybrid Electrochemical–Otto Cycle," Energies, MDPI, vol. 13(15), pages 1-10, August.
    13. Quach, Thai-Quyen & Giap, Van-Tien & Keun Lee, Dong & Pineda Israel, Torres & Young Ahn, Kook, 2022. "High-efficiency ammonia-fed solid oxide fuel cell systems for distributed power generation," Applied Energy, Elsevier, vol. 324(C).
    14. Khoshgoftar Manesh, M.H. & Navid, P. & Blanco Marigorta, A.M. & Amidpour, M. & Hamedi, M.H., 2013. "New procedure for optimal design and evaluation of cogeneration system based on advanced exergoeconomic and exergoenvironmental analyses," Energy, Elsevier, vol. 59(C), pages 314-333.
    15. Kasaeian, Alibakhsh & Hadavi, Hamed & Amirhaeri, Yasaman & Pourfayaz, Fathollah, 2022. "Thermodynamic analysis of a wood chips-based cycle integrated with solid oxide fuel cell," Renewable Energy, Elsevier, vol. 195(C), pages 1174-1193.
    16. Lara, Yolanda & Petrakopoulou, Fontina & Morosuk, Tatiana & Boyano, Alicia & Tsatsaronis, George, 2017. "An exergy-based study on the relationship between costs and environmental impacts in power plants," Energy, Elsevier, vol. 138(C), pages 920-928.
    17. Gainey, Brian & Lawler, Benjamin, 2021. "A fuel cell free piston gas turbine hybrid architecture for high-efficiency, load-flexible power generation," Applied Energy, Elsevier, vol. 283(C).
    18. Nguyen, Tuong-Van & Voldsund, Mari & Elmegaard, Brian & Ertesvåg, Ivar Ståle & Kjelstrup, Signe, 2014. "On the definition of exergy efficiencies for petroleum systems: Application to offshore oil and gas processing," Energy, Elsevier, vol. 73(C), pages 264-281.
    19. Choi, Wonjae & Song, Han Ho, 2020. "Composition-considered Woschni heat transfer correlation: Findings from the analysis of over-expected engine heat losses in a solid oxide fuel cell–internal combustion engine hybrid system," Energy, Elsevier, vol. 203(C).
    20. Wu, Zhen & Zhu, Pengfei & Yao, Jing & Zhang, Shengan & Ren, Jianwei & Yang, Fusheng & Zhang, Zaoxiao, 2020. "Combined biomass gasification, SOFC, IC engine, and waste heat recovery system for power and heat generation: Energy, exergy, exergoeconomic, environmental (4E) evaluations," Applied Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:295:y:2021:i:c:s0306261921004979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.