IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Physical sustainability assessment for the China society: Exergy-based systems account for resources use and environmental emissions

  • Zhang, Bo
  • Chen, G.Q.
Registered author(s):

    As a physical assessment of the sustainability of the China society, presented in this paper is an exergy-based systems account for resources use and environmental emissions of the China society in 2006 as the most recent year with statistics availability. Exergy analysis is applied to elucidate the resources flows from the natural environment into the society, between other countries or regions and the society, between the sectors of the society, and the emissions outflows into the natural environment from different sectors. For the China society broken down into seven sectors (i.e., extraction, conversion, agriculture, industry, transportation, tertiary and households) as one of the most complicated cases, systems account of environmental emissions as greenhouse gases and "three wastes" is carried out for the first time, combined with an updated resources account. The total societal exergy consumption amounts to 101.1Â EJ, of which 93.6% is due to resources use accounted as 94.6Â EJ, of which 23.2% is by the industry sector, 22.8% by conversion, 20.4% by households, 12.3% by agriculture, 9.0% by tertiary, 6.9% by extraction and 5.4% by transport, and 6.4% due to environmental emissions accounted as 6481.6Â PJ, including greenhouse gas emissions of 5706.1Â PJ, with the highly remarkable fraction of 49.05% from CH4 of the same importance as 50.91% from CO2 and only 0.04% from N2O, and "three wastes" emissions of only 775.5Â PJ. The extraction sector is shown as the leading emitter with 32.6% of the total emissions, followed by the industry with 20.0%, agriculture with 17.3%, and conversion sector with 16.8%. To characterize the network performance in context of environmental resources from a systems ecological perspective, exergy-based ecological efficiency and resources conversion coefficient are found as 88.8% and 91.3% for the extraction sector, 29.0% and 30.0% for the conversion sector, 31.5% and 33.5% for the agriculture sector, 34.8% and 36.1% for the industry sector, 16.3% and 17.3% for the transportation sector, 38.4% and 38.5% for the tertiary sector, and only 1.3% and 1.3% for the households sector, respectively. Comparisons with other societies and with China society in previous years are made to further illustrate the physical sustainability of the societal system on the international and development horizons.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(10)00029-8
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Renewable and Sustainable Energy Reviews.

    Volume (Year): 14 (2010)
    Issue (Month): 6 (August)
    Pages: 1527-1545

    as
    in new window

    Handle: RePEc:eee:rensus:v:14:y:2010:i:6:p:1527-1545
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description

    Order Information: Postal: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
    Web: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Dincer, Ibrahim & Rosen, Marc A., 2005. "Thermodynamic aspects of renewables and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(2), pages 169-189, April.
    2. Szargut, Jan, 1989. "Chemical exergies of the elements," Applied Energy, Elsevier, vol. 32(4), pages 269-286.
    3. Milia, Daniela & Sciubba, Enrico, 2006. "Exergy-based lumped simulation of complex systems: An interactive analysis tool," Energy, Elsevier, vol. 31(1), pages 100-111.
    4. Wall, Göran, 1990. "Exergy conversion in the Japanese society," Energy, Elsevier, vol. 15(5), pages 435-444.
    5. Chen, B. & Chen, G.Q., 2007. "Resource analysis of the Chinese society 1980-2002 based on exergy--Part 4: Fishery and rangeland," Energy Policy, Elsevier, vol. 35(4), pages 2079-2086, April.
    6. Gasparatos, Alexandros & El-Haram, Mohamed & Horner, Malcolm, 2009. "Assessing the sustainability of the UK society using thermodynamic concepts: Part 1," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1074-1081, June.
    7. Utlu, Zafer & Hepbasli, Arif, 2008. "Energetic and exergetic assessment of the industrial sector at varying dead (reference) state temperatures: A review with an illustrative example," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1277-1301, June.
    8. Wang, Can & Chen, Jining & Zou, Ji, 2005. "Decomposition of energy-related CO2 emission in China: 1957–2000," Energy, Elsevier, vol. 30(1), pages 73-83.
    9. Ertesvåg, Ivar S & Mielnik, Michal, 2000. "Exergy analysis of the Norwegian society," Energy, Elsevier, vol. 25(10), pages 957-973.
    10. Zhou, J.B. & Jiang, M.M. & Chen, G.Q., 2007. "Estimation of methane and nitrous oxide emission from livestock and poultry in China during 1949-2003," Energy Policy, Elsevier, vol. 35(7), pages 3759-3767, July.
    11. Chen, B. & Chen, G.Q., 2006. "Exergy analysis for resource conversion of the Chinese Society 1993 under the material product system," Energy, Elsevier, vol. 31(8), pages 1115-1150.
    12. Ji, Xi & Chen, G.Q., 2006. "Exergy analysis of energy utilization in the transportation sector in China," Energy Policy, Elsevier, vol. 34(14), pages 1709-1719, September.
    13. Chen, B. & Chen, G.Q., 2007. "Resource analysis of the Chinese society 1980-2002 based on exergy--Part 2: Renewable energy sources and forest," Energy Policy, Elsevier, vol. 35(4), pages 2051-2064, April.
    14. Chen, G.Q. & Chen, B., 2007. "Resource analysis of the Chinese society 1980-2002 based on exergy--Part 1: Fossil fuels and energy minerals," Energy Policy, Elsevier, vol. 35(4), pages 2038-2050, April.
    15. Valero, A., 2006. "Exergy accounting: Capabilities and drawbacks," Energy, Elsevier, vol. 31(1), pages 164-180.
    16. Rosen, Marc A. & Dincer, Ibrahim & Kanoglu, Mehmet, 2008. "Role of exergy in increasing efficiency and sustainability and reducing environmental impact," Energy Policy, Elsevier, vol. 36(1), pages 128-137, January.
    17. Chen, G.Q. & Chen, B., 2009. "Extended-exergy analysis of the Chinese society," Energy, Elsevier, vol. 34(9), pages 1127-1144.
    18. Gasparatos, Alexandros & El-Haram, Mohamed & Horner, Malcolm, 2009. "Assessing the sustainability of the UK society using thermodynamic concepts: Part 2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 956-970, June.
    19. Costa, Márcio Macedo & Schaeffer, Roberto & Worrell, Ernst, 2001. "Exergy accounting of energy and materials flows in steel production systems," Energy, Elsevier, vol. 26(4), pages 363-384.
    20. Morris, David R. & Szargut, Jan, 1986. "Standard chemical exergy of some elements and compounds on the planet earth," Energy, Elsevier, vol. 11(8), pages 733-755.
    21. Wall, Göran & Sciubba, Enrico & Naso, Vincenzo, 1994. "Exergy use in the Italian society," Energy, Elsevier, vol. 19(12), pages 1267-1274.
    22. Utlu, Zafer & Hepbasli, Arif, 2007. "A review on analyzing and evaluating the energy utilization efficiency of countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(1), pages 1-29, January.
    23. Wall, Goran, 1987. "Exergy conversion in the Swedish society," Resources and Energy, Elsevier, vol. 9(1), pages 55-73, June.
    24. Ji, Xi & Chen, G.Q. & Chen, B. & Jiang, M.M., 2009. "Exergy-based assessment for waste gas emissions from Chinese transportation," Energy Policy, Elsevier, vol. 37(6), pages 2231-2240, June.
    25. Chen, B. & Chen, G.Q., 2007. "Resource analysis of the Chinese society 1980-2002 based on exergy--Part 3: Agricultural products," Energy Policy, Elsevier, vol. 35(4), pages 2065-2078, April.
    26. Gasparatos, Alexandros & El-Haram, Mohamed & Horner, Malcolm, 2009. "A longitudinal analysis of the UK transport sector, 1970-2010," Energy Policy, Elsevier, vol. 37(2), pages 623-632, February.
    27. Utlu, Zafer & Hepbasli, Arif, 2007. "Parametrical investigation of the effect of dead (reference) state on energy and exergy utilization efficiencies of residential-commercial sectors: A review and an application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(4), pages 603-634, May.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:14:y:2010:i:6:p:1527-1545. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.