IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i7p2197-2213d18709.html
   My bibliography  Save this article

The Characteristics of the Exergy Reference Environment and Its Implications for Sustainability-Based Decision-Making

Author

Listed:
  • Kyrke Gaudreau

    (Environment and Resource Studies, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada)

  • Roydon A. Fraser

    (Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada)

  • Stephen Murphy

    (Environment and Resource Studies, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada)

Abstract

In the energy realm there is a pressing need to make decisions in a complex world characterized by biophysical limits. Exergy has been promoted as a preferred means of characterizing the impacts of resource consumption and waste production for the purpose of improving decision-making. This paper provides a unique and critical analysis of universal and comprehensive formulations of the chemical exergy reference environment, for the purpose of better understanding how exergy can inform decision-making. Four related insights emerged from the analysis, notably: (1) standard and universal chemical exergy reference environments necessarily encounter internal inconsistencies and even contradictions in their very formulations; (2) these inconsistencies are a result of incompatibility between the exergy reference environment and natural environment, and the desire to model the exergy reference environment after the natural environment so as to maintain analytical relevance; (3) the topics for which exergy is most appropriate as an analytical tool are not well served by comprehensive reference environments, and (4) the inconsistencies point to a need for deeper reflection of whether it is appropriate to adopt a thermodynamic frame of analysis for situations whose relevant characteristics are non-thermodynamic (e.g., to characterize scarcity). The use of comprehensive reference environments may lead to incorrect recommendations and ultimately reduce its appeal for informing decision-making. Exergy may better inform decision-making by returning to process dependent reference states that model specific processes and situations for the purpose of engineering optimization.

Suggested Citation

  • Kyrke Gaudreau & Roydon A. Fraser & Stephen Murphy, 2012. "The Characteristics of the Exergy Reference Environment and Its Implications for Sustainability-Based Decision-Making," Energies, MDPI, vol. 5(7), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:7:p:2197-2213:d:18709
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/7/2197/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/7/2197/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Utlu, Zafer & Hepbasli, Arif, 2008. "Energetic and exergetic assessment of the industrial sector at varying dead (reference) state temperatures: A review with an illustrative example," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1277-1301, June.
    2. Ahrendts, Joachim, 1980. "Reference states," Energy, Elsevier, vol. 5(8), pages 666-677.
    3. Hermann, Weston A., 2006. "Quantifying global exergy resources," Energy, Elsevier, vol. 31(12), pages 1685-1702.
    4. Ayres, Robert U. & Ayres, Leslie W. & Martinás, Katalin, 1998. "Exergy, waste accounting, and life-cycle analysis," Energy, Elsevier, vol. 23(5), pages 355-363.
    5. Martinez-Alier, Joan & Munda, Giuseppe & O'Neill, John, 1998. "Weak comparability of values as a foundation for ecological economics," Ecological Economics, Elsevier, vol. 26(3), pages 277-286, September.
    6. Kyrke Gaudreau & Roydon A. Fraser & Stephen Murphy, 2009. "The Tenuous Use of Exergy as a Measure of Resource Value or Waste Impact," Sustainability, MDPI, vol. 1(4), pages 1-20, December.
    7. Eli Spiegelman & George Spiegelman & Jonah Spiegelman, 2007. "Money as Social Exergy," Journal of Bioeconomics, Springer, vol. 9(3), pages 265-277, December.
    8. Favrat, D. & Marechal, F. & Epelly, O., 2008. "The challenge of introducing an exergy indicator in a local law on energy," Energy, Elsevier, vol. 33(2), pages 130-136.
    9. Valero, A., 2006. "Exergy accounting: Capabilities and drawbacks," Energy, Elsevier, vol. 31(1), pages 164-180.
    10. Morris, David R. & Szargut, Jan, 1986. "Standard chemical exergy of some elements and compounds on the planet earth," Energy, Elsevier, vol. 11(8), pages 733-755.
    11. Sciubba, Enrico, 2003. "Cost analysis of energy conversion systems via a novel resource-based quantifier," Energy, Elsevier, vol. 28(5), pages 457-477.
    12. Chen, G.Q. & Ji, Xi, 2007. "Chemical exergy based evaluation of water quality," Ecological Modelling, Elsevier, vol. 200(1), pages 259-268.
    13. Gattie, David K. & Kellam, Nadia N. & Turk, H. Jeff, 2007. "Informing ecological engineering through ecological network analysis, ecological modelling, and concepts of systems and engineering ecology," Ecological Modelling, Elsevier, vol. 208(1), pages 25-40.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Whiting & Luis Gabriel Carmona & Angeles Carrasco & Tânia Sousa, 2017. "Exergy Replacement Cost of Fossil Fuels: Closing the Carbon Cycle," Energies, MDPI, vol. 10(7), pages 1-21, July.
    2. Sanober Hassan Khattak & Michael Oates & Rick Greenough, 2018. "Towards Improved Energy and Resource Management in Manufacturing," Energies, MDPI, vol. 11(4), pages 1-15, April.
    3. Petar Sabev Varbanov & Hon Huin Chin & Alexandra-Elena Plesu Popescu & Stanislav Boldyryev, 2020. "Thermodynamics-Based Process Sustainability Evaluation," Energies, MDPI, vol. 13(9), pages 1-28, April.
    4. Wiesberg, Igor Lapenda & Brigagão, George Victor & Araújo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2019. "Carbon dioxide management via exergy-based sustainability assessment: Carbon Capture and Storage versus conversion to methanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 720-732.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, G.Q. & Qi, Z.H., 2007. "Systems account of societal exergy utilization: China 2003," Ecological Modelling, Elsevier, vol. 208(2), pages 102-118.
    2. Ji, Xi & Chen, G.Q. & Chen, B. & Jiang, M.M., 2009. "Exergy-based assessment for waste gas emissions from Chinese transportation," Energy Policy, Elsevier, vol. 37(6), pages 2231-2240, June.
    3. Chen, G.Q. & Ji, Xi, 2007. "Chemical exergy based evaluation of water quality," Ecological Modelling, Elsevier, vol. 200(1), pages 259-268.
    4. Zhang, Bo & Chen, G.Q. & Xia, X.H. & Li, S.C. & Chen, Z.M. & Ji, Xi, 2012. "Environmental emissions by Chinese industry: Exergy-based unifying assessment," Energy Policy, Elsevier, vol. 45(C), pages 490-501.
    5. Chen, B. & Chen, G.Q., 2007. "Modified ecological footprint accounting and analysis based on embodied exergy--a case study of the Chinese society 1981-2001," Ecological Economics, Elsevier, vol. 61(2-3), pages 355-376, March.
    6. Zhang, Bo & Chen, G.Q., 2010. "Physical sustainability assessment for the China society: Exergy-based systems account for resources use and environmental emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1527-1545, August.
    7. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2012. "Thermodynamic analysis of human–environment systems: A review focused on industrial ecology," Ecological Modelling, Elsevier, vol. 228(C), pages 76-88.
    8. Seckin, C. & Sciubba, E. & Bayulken, A.R., 2012. "An application of the extended exergy accounting method to the Turkish society, year 2006," Energy, Elsevier, vol. 40(1), pages 151-163.
    9. Hao, Xiaoqing & An, Haizhong & Qi, Hai & Gao, Xiangyun, 2016. "Evolution of the exergy flow network embodied in the global fossil energy trade: Based on complex network," Applied Energy, Elsevier, vol. 162(C), pages 1515-1522.
    10. Chen, G.Q. & Chen, B., 2009. "Extended-exergy analysis of the Chinese society," Energy, Elsevier, vol. 34(9), pages 1127-1144.
    11. Hoang, Viet-Ngu & Rao, D.S. Prasada, 2010. "Measuring and decomposing sustainable efficiency in agricultural production: A cumulative exergy balance approach," Ecological Economics, Elsevier, vol. 69(9), pages 1765-1776, July.
    12. Shao, Ling & Wu, Zi & Chen, G.Q., 2013. "Exergy based ecological footprint accounting for China," Ecological Modelling, Elsevier, vol. 252(C), pages 83-96.
    13. Rigby, Aidan & Lindley, Ben & Cullen, Jonathan, 2023. "An exergy based assessment of the efficiency of nuclear fuel cycles," Energy, Elsevier, vol. 264(C).
    14. Simpson, Adam P. & Edwards, Chris F., 2013. "The utility of environmental exergy analysis for decision making in energy," Energy, Elsevier, vol. 55(C), pages 742-751.
    15. Jadhao, Sachin B. & Pandit, Aniruddha B. & Bakshi, Bhavik R., 2017. "The evolving metabolism of a developing economy: India’s exergy flows over four decades," Applied Energy, Elsevier, vol. 206(C), pages 851-857.
    16. Tzanakakis, V.A. & Angelakis, A.N., 2011. "Chemical exergy as a unified and objective indicator in the assessment and optimization of land treatment systems," Ecological Modelling, Elsevier, vol. 222(17), pages 3082-3091.
    17. Whiting, Kai & Carmona, Luis Gabriel & Sousa, Tânia, 2017. "A review of the use of exergy to evaluate the sustainability of fossil fuels and non-fuel mineral depletion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 202-211.
    18. Ukidwe, Nandan U. & Bakshi, Bhavik R., 2007. "Industrial and ecological cumulative exergy consumption of the United States via the 1997 input–output benchmark model," Energy, Elsevier, vol. 32(9), pages 1560-1592.
    19. Talens Peiró, L. & Lombardi, L. & Villalba Méndez, G. & Gabarrell i Durany, X., 2010. "Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of the production of biodiesel from used cooking oil (UCO)," Energy, Elsevier, vol. 35(2), pages 889-893.
    20. Rašković, Predrag & Guzović, Zvonimir & Cvetković, Svetislav, 2013. "Performance analysis of electricity generation by the medium temperature geothermal resources: Velika Ciglena case study," Energy, Elsevier, vol. 54(C), pages 11-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:7:p:2197-2213:d:18709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.