IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i3p849-856.html

A review of installed solar photovoltaic and thermal collector capacities in relation to solar potential for the EU-15

Author

Listed:
  • Celik, Ali Naci
  • Muneer, Tariq
  • Clarke, Peter

Abstract

This article analyses the energy statistics of 15 European Union countries (EU-15), giving special emphasis to the installed solar photovoltaic and thermal collector capacity. The installed capacities per capita are analysed in relation to the solar radiation income of respective countries with the view to explore the relationship between the solar income and its utilisation as of the year 2006. In terms of the installed solar thermal collector capacity, Austria leads the statistics amongst the countries studied with 223Wth collector capacity per capita, followed by Greece with 207Wth. Except for Greece, it is observed that the countries with high solar radiation income are lacking to realise their solar potential. Regarding the installed photovoltaic power per capita, Luxembourg leads the pack by a wide margin with 47Wp capacity, followed by Germany with 30Wp. Fiscal instruments to invigorate the deployment of solar energy have also been identified in this work.

Suggested Citation

  • Celik, Ali Naci & Muneer, Tariq & Clarke, Peter, 2009. "A review of installed solar photovoltaic and thermal collector capacities in relation to solar potential for the EU-15," Renewable Energy, Elsevier, vol. 34(3), pages 849-856.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:3:p:849-856
    DOI: 10.1016/j.renene.2008.05.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148108002334
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.05.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Duke, Richard & Williams, Robert & Payne, Adam, 2005. "Accelerating residential PV expansion: demand analysis for competitive electricity markets," Energy Policy, Elsevier, vol. 33(15), pages 1912-1929, October.
    2. Tsoutsos, Theocharis & Mavrogiannis, Ioannis & Karapanagiotis, Nikolas & Tselepis, Stathis & Agoris, Dimosthenis, 2004. "An analysis of the Greek photovoltaic market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(1), pages 49-72, February.
    3. Gabler, Hansjörg, 1998. "Autonomous power supply with photovoltaics: Photovoltaics for rural electrification - reality and vision," Renewable Energy, Elsevier, vol. 15(1), pages 512-518.
    4. Khan, Faisal I. & Hawboldt, Kelly & Iqbal, M.T., 2005. "Life Cycle Analysis of wind–fuel cell integrated system," Renewable Energy, Elsevier, vol. 30(2), pages 157-177.
    5. Jäger-Waldau, Arnulf, 2007. "Photovoltaics and renewable energies in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1414-1437, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Papadopoulos, A.M. & Karteris, M.M., 2009. "An assessment of the Greek incentives scheme for photovoltaics," Energy Policy, Elsevier, vol. 37(5), pages 1945-1952, May.
    2. Weidong Chen & Yujie Bi, 2018. "Electricity price subsidy or carbon-trading subsidy: which is more efficient to develop photovoltaic power generation from a government perspective?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(5), pages 667-683, June.
    3. Bórawski, Piotr & Holden, Lisa & Bełdycka-Bórawska, Aneta, 2023. "Perspectives of photovoltaic energy market development in the european union," Energy, Elsevier, vol. 270(C).
    4. Orioli, Aldo & Di Gangi, Alessandra, 2013. "Effects of the Italian financial crisis on the photovoltaic dissemination in a southern city," Energy, Elsevier, vol. 62(C), pages 173-184.
    5. Martin, Nigel J. & Rice, John L., 2017. "Examining the use of concept analysis and mapping software for renewable energy feed-in tariff design," Renewable Energy, Elsevier, vol. 113(C), pages 211-220.
    6. Badcock, Jeremy & Lenzen, Manfred, 2010. "Subsidies for electricity-generating technologies: A review," Energy Policy, Elsevier, vol. 38(9), pages 5038-5047, September.
    7. Kaldellis, John & Kavadias, Kosmas & Zafirakis, Dimitrios, 2012. "Experimental validation of the optimum photovoltaic panels' tilt angle for remote consumers," Renewable Energy, Elsevier, vol. 46(C), pages 179-191.
    8. Ramli, Makbul A.M. & Twaha, Ssennoga, 2015. "Analysis of renewable energy feed-in tariffs in selected regions of the globe: Lessons for Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 649-661.
    9. Muhammad-Sukki, Firdaus & Abu-Bakar, Siti Hawa & Munir, Abu Bakar & Mohd Yasin, Siti Hajar & Ramirez-Iniguez, Roberto & McMeekin, Scott G. & Stewart, Brian G. & Sarmah, Nabin & Mallick, Tapas Kumar & , 2014. "Feed-in tariff for solar photovoltaic: The rise of Japan," Renewable Energy, Elsevier, vol. 68(C), pages 636-643.
    10. Oliver O. Apeh & Edson L. Meyer & Ochuko K. Overen, 2022. "Contributions of Solar Photovoltaic Systems to Environmental and Socioeconomic Aspects of National Development—A Review," Energies, MDPI, vol. 15(16), pages 1-28, August.
    11. Piotrowska–Woroniak, Joanna & Woroniak, Grzegorz & Załuska, Wiesław, 2015. "Energy production from PV and carbon reduction in great lakes region of Masuria Poland: A case study of water park in Elk," Renewable Energy, Elsevier, vol. 83(C), pages 1315-1325.
    12. Muhammad-Sukki, Firdaus & Ramirez-Iniguez, Roberto & Munir, Abu Bakar & Mohd Yasin, Siti Hajar & Abu-Bakar, Siti Hawa & McMeekin, Scott G. & Stewart, Brian G., 2013. "Revised feed-in tariff for solar photovoltaic in the United Kingdom: A cloudy future ahead?," Energy Policy, Elsevier, vol. 52(C), pages 832-838.
    13. Gustavo Cáceres & Shahriyar Nasirov & Huili Zhang & Gerardo Araya-Letelier, 2014. "Residential Solar PV Planning in Santiago, Chile: Incorporating the PM10 Parameter," Sustainability, MDPI, vol. 7(1), pages 1-19, December.
    14. Orioli, Aldo & Di Gangi, Alessandra, 2014. "Review of the energy and economic parameters involved in the effectiveness of grid-connected PV systems installed in multi-storey buildings," Applied Energy, Elsevier, vol. 113(C), pages 955-969.
    15. Martin, Nigel & Rice, John, 2013. "The solar photovoltaic feed-in tariff scheme in New South Wales, Australia," Energy Policy, Elsevier, vol. 61(C), pages 697-706.
    16. Lang, Tillmann & Gloerfeld, Erik & Girod, Bastien, 2015. "Don׳t just follow the sun – A global assessment of economic performance for residential building photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 932-951.
    17. Andrea Colantoni & Danilo Monarca & Alvaro Marucci & Massimo Cecchini & Ilaria Zambon & Federico Di Battista & Diego Maccario & Maria Grazia Saporito & Margherita Beruto, 2018. "Solar Radiation Distribution inside a Greenhouse Prototypal with Photovoltaic Mobile Plant and Effects on Flower Growth," Sustainability, MDPI, vol. 10(3), pages 1-17, March.
    18. Dusonchet, L. & Telaretti, E., 2015. "Comparative economic analysis of support policies for solar PV in the most representative EU countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 986-998.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Celik, A.N., 2007. "Effect of different load profiles on the loss-of-load probability of stand-alone photovoltaic systems," Renewable Energy, Elsevier, vol. 32(12), pages 2096-2115.
    2. Martínez, E. & Sanz, F. & Pellegrini, S. & Jiménez, E. & Blanco, J., 2009. "Life cycle assessment of a multi-megawatt wind turbine," Renewable Energy, Elsevier, vol. 34(3), pages 667-673.
    3. Tsoutsos, Theocharis D. & Tournaki, Stavroula K. & Gkouskos, Zacharias K. & Despotou, Eleni & Masson, Gaetan, 2013. "Training and certification of PV installers in Europe," Renewable Energy, Elsevier, vol. 49(C), pages 222-226.
    4. Kaminaris, S.D. & Tsoutsos, T.D. & Agoris, D. & Machias, A.V., 2006. "Assessing renewables-to-electricity systems: a fuzzy expert system model," Energy Policy, Elsevier, vol. 34(12), pages 1357-1366, August.
    5. Jiaqi Li & Jie Chen & Hengyu Guo, 2021. "Triboelectric Nanogenerators for Harvesting Wind Energy: Recent Advances and Future Perspectives," Energies, MDPI, vol. 14(21), pages 1-18, October.
    6. Sherif A. Zaid & Ahmed M. Kassem & Aadel M. Alatwi & Hani Albalawi & Hossam AbdelMeguid & Atef Elemary, 2023. "Optimal Control of an Autonomous Microgrid Integrated with Super Magnetic Energy Storage Using an Artificial Bee Colony Algorithm," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    7. Briguglio, Marie & Formosa, Glenn, 2017. "When households go solar: Determinants of uptake of a Photovoltaic Scheme and policy insights," Energy Policy, Elsevier, vol. 108(C), pages 154-162.
    8. Lund, Henrik, 2010. "The implementation of renewable energy systems. Lessons learned from the Danish case," Energy, Elsevier, vol. 35(10), pages 4003-4009.
    9. Nadia Belmonte & Carlo Luetto & Stefano Staulo & Paola Rizzi & Marcello Baricco, 2017. "Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications," Challenges, MDPI, vol. 8(1), pages 1-15, March.
    10. Oliva H., Sebastian, 2017. "Residential energy efficiency and distributed generation - Natural partners or competition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 932-940.
    11. Yang, Jin & Chen, Bin, 2016. "Emergy-based sustainability evaluation of wind power generation systems," Applied Energy, Elsevier, vol. 177(C), pages 239-246.
    12. Jabir Ali Ouassou & Julian Straus & Marte Fodstad & Gunhild Reigstad & Ove Wolfgang, 2021. "Applying endogenous learning models in energy system optimization," Papers 2106.06373, arXiv.org.
    13. Lahimer, A.A. & Alghoul, M.A. & Yousif, Fadhil & Razykov, T.M. & Amin, N. & Sopian, K., 2013. "Research and development aspects on decentralized electrification options for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 314-324.
    14. Yang, Jin & Chen, Bin, 2013. "Integrated evaluation of embodied energy, greenhouse gas emission and economic performance of a typical wind farm in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 559-568.
    15. Xydis, G., 2012. "Development of an integrated methodology for the energy needs of a major urban city: The case study of Athens, Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6705-6716.
    16. Andreas Welling, 2017. "Green Finance: Recent developments, characteristics and important actors," FEMM Working Papers 170002, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    17. Bojic, Milorad & Blagojevic, Mirko, 2006. "Photovoltaic electricity production of a grid-connected urban house in Serbia," Energy Policy, Elsevier, vol. 34(17), pages 2941-2948, November.
    18. Peters, Michael & Schneider, Malte & Griesshaber, Tobias & Hoffmann, Volker H., 2012. "The impact of technology-push and demand-pull policies on technical change – Does the locus of policies matter?," Research Policy, Elsevier, vol. 41(8), pages 1296-1308.
    19. Lee, Amy H.I. & Chen, Hsing Hung & Kang, He-Yau, 2011. "A model to analyze strategic products for photovoltaic silicon thin-film solar cell power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1271-1283, February.
    20. Kaldellis, John & Zafirakis, Dimitrios, 2012. "Experimental investigation of the optimum photovoltaic panels’ tilt angle during the summer period," Energy, Elsevier, vol. 38(1), pages 305-314.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:3:p:849-856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.