IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v320y2022ics0306261922004251.html
   My bibliography  Save this article

A novel coordinated optimization strategy for high utilization of renewable energy sources and reduction of coal costs and emissions in hybrid hydro-thermal-wind power systems

Author

Listed:
  • Li, Huanhuan
  • Zhang, Runfan
  • Mahmud, Md. Apel
  • Hredzak, Branislav

Abstract

In multi-source-based energy systems, the ultimate target of optimal operation of the generation units is to create an efficient power system with cleaner production. In this paper, a novel coordinated operation strategy optimizing the commitment of hydro, thermal and wind generation units is proposed. The strategy consists of two hierarchical optimization goals. In the primary goal, utilization of wind and hydro energy units is optimized, and the objective functions involve maximizing hydro energy utilization and minimizing wind curtailment. In the secondary goal, coal costs and carbon emissions are minimized after meeting the utilization goal. The overall execution of the strategy is governed by three power production decisions including peak-load shaving, valley-load filling and generation. The first two decisions suppress the fluctuation in wind power while the generation decision makes full use of the hydro units to replace the working thermal units. The presented operation strategy is applied to an improved IEEE 118-node power system. The optimization ensures the highest utilization of wind energy while coping with the day-ahead wind power forecasting error. Moreover, a particle swarm optimization method is applied to optimize the coal costs and carbon emissions. The presented results demonstrate the capability of the proposed strategy to configure the operation of the multi-source-based energy system with high efficiency and low emissions. Finally, several recommendations to amend the existing management of multi-source-based energy systems are presented.

Suggested Citation

  • Li, Huanhuan & Zhang, Runfan & Mahmud, Md. Apel & Hredzak, Branislav, 2022. "A novel coordinated optimization strategy for high utilization of renewable energy sources and reduction of coal costs and emissions in hybrid hydro-thermal-wind power systems," Applied Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:appene:v:320:y:2022:i:c:s0306261922004251
    DOI: 10.1016/j.apenergy.2022.119019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922004251
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruggles, Tyler H. & Caldeira, Ken, 2022. "Wind and solar generation may reduce the inter-annual variability of peak residual load in certain electricity systems," Applied Energy, Elsevier, vol. 305(C).
    2. Dubey, Hari Mohan & Pandit, Manjaree & Panigrahi, B.K., 2016. "Hydro-thermal-wind scheduling employing novel ant lion optimization technique with composite ranking index," Renewable Energy, Elsevier, vol. 99(C), pages 18-34.
    3. Salkuti, Surender Reddy, 2019. "Day-ahead thermal and renewable power generation scheduling considering uncertainty," Renewable Energy, Elsevier, vol. 131(C), pages 956-965.
    4. Moretti, Luca & Martelli, Emanuele & Manzolini, Giampaolo, 2020. "An efficient robust optimization model for the unit commitment and dispatch of multi-energy systems and microgrids," Applied Energy, Elsevier, vol. 261(C).
    5. Ji, Bin & Zhang, Binqiao & Yu, Samson S. & Zhang, Dezhi & Yuan, Xiaohui, 2021. "An enhanced Borg algorithmic framework for solving the hydro-thermal-wind Co-scheduling problem," Energy, Elsevier, vol. 218(C).
    6. Zhang, Yachao & Le, Jian & Liao, Xiaobing & Zheng, Feng & Liu, Kaipei & An, Xueli, 2018. "Multi-objective hydro-thermal-wind coordination scheduling integrated with large-scale electric vehicles using IMOPSO," Renewable Energy, Elsevier, vol. 128(PA), pages 91-107.
    7. Mathieu Blondeel & Thijs Van de Graaf, 2018. "Toward a global coal mining moratorium? A comparative analysis of coal mining policies in the USA, China, India and Australia," Climatic Change, Springer, vol. 150(1), pages 89-101, September.
    8. Robertson, Bryson & Bekker, Jessica & Buckham, Bradley, 2020. "Renewable integration for remote communities: Comparative allowable cost analyses for hydro, solar and wave energy," Applied Energy, Elsevier, vol. 264(C).
    9. Li, Huanhuan & Xu, Beibei & Arzaghi, Ehsan & Abbassi, Rouzbeh & Chen, Diyi & Aggidis, George A. & Zhang, Jingjing & Patelli, Edoardo, 2020. "Transient safety assessment and risk mitigation of a hydroelectric generation system," Energy, Elsevier, vol. 196(C).
    10. Rasku, Topi & Miettinen, Jari & Rinne, Erkka & Kiviluoma, Juha, 2020. "Impact of 15-day energy forecasts on the hydro-thermal scheduling of a future Nordic power system," Energy, Elsevier, vol. 192(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Huining & Shi, Hao & Tan, Yiqiu & Ye, Qing & Liu, Xiujie, 2022. "Modeling and assessment of operation economic benefits for hydronic snow melting pavement system," Applied Energy, Elsevier, vol. 326(C).
    2. Zhang, Jing & Hu, Sijia & Zhang, Zhiwen & Li, Yong & Lin, Jinjie & Wu, Jinbo & Gong, Yusheng & He, Li, 2023. "An adaptive frequency regulation strategy with high renewable energy participating level for isolated microgrid," Renewable Energy, Elsevier, vol. 212(C), pages 683-698.
    3. Asmita Ajay Rathod & Balaji Subramanian, 2022. "Scrutiny of Hybrid Renewable Energy Systems for Control, Power Management, Optimization and Sizing: Challenges and Future Possibilities," Sustainability, MDPI, vol. 14(24), pages 1-35, December.
    4. Lee, Chien-Chiang & Hussain, Jafar & Mu, Xian, 2024. "Renewable energy and carbon-neutral gaming: A holistic approach to sustainable electricity," Energy, Elsevier, vol. 297(C).
    5. Yujing Liu & Ruoyun Du & Dongxiao Niu, 2022. "Forecast of Coal Demand in Shanxi Province Based on GA—LSSVM under Multiple Scenarios," Energies, MDPI, vol. 15(17), pages 1-16, September.
    6. Li, Ze & Guo, Junfei & Gao, Xinyu & Yang, Xiaohu & He, Ya-Ling, 2023. "A multi-strategy improved sparrow search algorithm of large-scale refrigeration system: Optimal loading distribution of chillers," Applied Energy, Elsevier, vol. 349(C).
    7. Tian, Yuyu & Chang, Jianxia & Wang, Yimin & Wang, Xuebin & Zhao, Mingzhe & Meng, Xuejiao & Guo, Aijun, 2022. "A method of short-term risk and economic dispatch of the hydro-thermal-wind-PV hybrid system considering spinning reserve requirements," Applied Energy, Elsevier, vol. 328(C).
    8. Yuanyuan Liu & Hao Zhang & Pengcheng Guo & Chenxi Li & Shuai Wu, 2024. "Optimal Scheduling of a Cascade Hydropower Energy Storage System for Solar and Wind Energy Accommodation," Energies, MDPI, vol. 17(11), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Li, Gang & Liu, Lingjun, 2022. "Impacts of different wind and solar power penetrations on cascade hydroplants operation," Renewable Energy, Elsevier, vol. 182(C), pages 227-244.
    2. Ji, Bin & Zhang, Binqiao & Yu, Samson S. & Zhang, Dezhi & Yuan, Xiaohui, 2021. "An enhanced Borg algorithmic framework for solving the hydro-thermal-wind Co-scheduling problem," Energy, Elsevier, vol. 218(C).
    3. Daneshvar, Mohammadreza & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Asadi, Somayeh, 2020. "Two-stage stochastic programming model for optimal scheduling of the wind-thermal-hydropower-pumped storage system considering the flexibility assessment," Energy, Elsevier, vol. 193(C).
    4. Tang, Xiongmin & Li, Zhengshuo & Xu, Xuancong & Zeng, Zhijun & Jiang, Tianhong & Fang, Wenrui & Meng, Anbo, 2022. "Multi-objective economic emission dispatch based on an extended crisscross search optimization algorithm," Energy, Elsevier, vol. 244(PA).
    5. Polimeni, Simone & Moretti, Luca & Martelli, Emanuele & Leva, Sonia & Manzolini, Giampaolo, 2023. "A novel stochastic model for flexible unit commitment of off-grid microgrids," Applied Energy, Elsevier, vol. 331(C).
    6. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Zhao, Xin & Liu, Yu & Guo, Yasen & Wang, Sicheng, 2020. "A novel robust security constrained unit commitment model considering HVDC regulation," Applied Energy, Elsevier, vol. 278(C).
    7. Dey, Subhashish & Sreenivasulu, Anduri & Veerendra, G.T.N. & Rao, K. Venkateswara & Babu, P.S.S. Anjaneya, 2022. "Renewable energy present status and future potentials in India: An overview," Innovation and Green Development, Elsevier, vol. 1(1).
    8. Sakthivel, V.P. & Thirumal, K. & Sathya, P.D., 2022. "Short term scheduling of hydrothermal power systems with photovoltaic and pumped storage plants using quasi-oppositional turbulent water flow optimization," Renewable Energy, Elsevier, vol. 191(C), pages 459-492.
    9. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    10. Lu Wei & Yiyin Li & Boyu Xie & Ke Xu & Gaojun Meng, 2024. "Two-Stage Optimal Scheduling Based on the Meteorological Prediction of a Wind–Solar-Energy Storage System with Demand Response," Energies, MDPI, vol. 17(6), pages 1-13, March.
    11. Srikanth Reddy & Lokesh Panwar & Bijaya Ketan Panigrahi & Rajesh Kumar & Lalit Goel & Ameena Saad Al-Sumaiti, 2020. "A profit-based self-scheduling framework for generation company energy and ancillary service participation in multi-constrained environment with renewable energy penetration," Energy & Environment, , vol. 31(4), pages 549-569, June.
    12. Zhou, Yuekuan & Zheng, Siqian, 2020. "Multi-level uncertainty optimisation on phase change materials integrated renewable systems with hybrid ventilations and active cooling," Energy, Elsevier, vol. 202(C).
    13. Yan, Rujing & Wang, Jiangjiang & Wang, Jiahao & Tian, Lei & Tang, Saiqiu & Wang, Yuwei & Zhang, Jing & Cheng, Youliang & Li, Yuan, 2022. "A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties," Energy, Elsevier, vol. 247(C).
    14. Suroso Isnandar & Jonathan F. Simorangkir & Kevin M. Banjar-Nahor & Hendry Timotiyas Paradongan & Nanang Hariyanto, 2024. "A Multiparadigm Approach for Generation Dispatch Optimization in a Regulated Electricity Market towards Clean Energy Transition," Energies, MDPI, vol. 17(15), pages 1-28, August.
    15. Saletti, Costanza & Morini, Mirko & Gambarotta, Agostino, 2022. "Smart management of integrated energy systems through co-optimization with long and short horizons," Energy, Elsevier, vol. 250(C).
    16. Finke, Jonas & Bertsch, Valentin, 2022. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," MPRA Paper 115504, University Library of Munich, Germany.
    17. Li, Chaoshun & Wang, Wenxiao & Chen, Deshu, 2019. "Multi-objective complementary scheduling of hydro-thermal-RE power system via a multi-objective hybrid grey wolf optimizer," Energy, Elsevier, vol. 171(C), pages 241-255.
    18. Wang, Qiang & Li, Shuyu & Zhang, Min & Li, Rongrong, 2022. "Impact of COVID-19 pandemic on oil consumption in the United States: A new estimation approach," Energy, Elsevier, vol. 239(PC).
    19. Wang, Liying & Lin, Jialin & Dong, Houqi & Wang, Yuqing & Zeng, Ming, 2023. "Demand response comprehensive incentive mechanism-based multi-time scale optimization scheduling for park integrated energy system," Energy, Elsevier, vol. 270(C).
    20. Yao, Xilong & Wang, Hualing & Shao, Shuai & Li, Xiaoyu & Guo, Zhi, 2022. "“Booster” or “obstacle”: Can coal capacity cut policies moderate the resource curse effect? Evidence from Shanxi (China)," Resources Policy, Elsevier, vol. 75(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:320:y:2022:i:c:s0306261922004251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.