IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v180y2021icp1237-1247.html
   My bibliography  Save this article

Experimental study on isolated operation of hydro-turbine governing system of Lunzua hydropower station in Zambia

Author

Listed:
  • Wang, Cong
  • Wang, Dekuan
  • Zhang, Jianming

Abstract

This paper focused on the stable operation and control strategy of the hydro-turbine governing system (HTGS) in an isolated-grid operation mode. The stable operation of a hydropower station in isolated-grid operation mode is important for the safe operation of a power system. A regional power grid can be isolated from a main grid due to factors such as natural disasters, grid failures, and human errors. The Lunzua hydropower station in Zambia is often forced to operate as an isolated grid. To ensure its safe and stable operation, we conducted isolated-grid regulation tests in conjunction with field testing of HTGS and determined the parameters of the HTGS for stable operation of the isolated grid. In the field test, we first set the no-load and initial parameters for the isolated-grid mode through the no-load disturbance tests. Through simulated isolated-grid operation tests, we verified and further tuned the initial parameters. Meanwhile, we propose a control strategy for the transition between large-grid and isolated-grid modes. Through operational tests, we determined the parameters for stable operation in isolated-grid mode. During testing, we found that the water flow inertia time constant Tw was too large and the inertial time constant Ta of the impulsive generator was too small, which resulted in a narrow stability range of proportional–integral–derivative (PID) controller parameters for isolated-grid operation. The governing stability for isolated-grid operation was thus sensitive to the PID parameters. Since the isolated-grid field operation test of the HTGS of the Lunzua hydropower station was completed in August 2016, the generator units have maintained safe and stable operation in large-grid and isolated-grid modes, which validated the isolated-grid operation parameters and control strategy for the transition between large-grid and isolated-grid modes as determined by our test method. The methods of field test and control strategies used for isolated-grid operation have important practical value for the isolated grid operation of hydropower stations.

Suggested Citation

  • Wang, Cong & Wang, Dekuan & Zhang, Jianming, 2021. "Experimental study on isolated operation of hydro-turbine governing system of Lunzua hydropower station in Zambia," Renewable Energy, Elsevier, vol. 180(C), pages 1237-1247.
  • Handle: RePEc:eee:renene:v:180:y:2021:i:c:p:1237-1247
    DOI: 10.1016/j.renene.2021.09.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121013124
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.09.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Agar, D. & Rasi, M., 2008. "On the use of a laboratory-scale Pelton wheel water turbine in renewable energy education," Renewable Energy, Elsevier, vol. 33(7), pages 1517-1522.
    2. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2019. "China’s large-scale hydropower system: operation characteristics, modeling challenge and dimensionality reduction possibilities," Renewable Energy, Elsevier, vol. 136(C), pages 805-818.
    3. Li, Huanhuan & Xu, Beibei & Arzaghi, Ehsan & Abbassi, Rouzbeh & Chen, Diyi & Aggidis, George A. & Zhang, Jingjing & Patelli, Edoardo, 2020. "Transient safety assessment and risk mitigation of a hydroelectric generation system," Energy, Elsevier, vol. 196(C).
    4. Martínez-Lucas, Guillermo & Sarasúa, José Ignacio & Sánchez-Fernández, José Ángel & Wilhelmi, José Román, 2016. "Frequency control support of a wind-solar isolated system by a hydropower plant with long tail-race tunnel," Renewable Energy, Elsevier, vol. 90(C), pages 362-376.
    5. Cheng, Chuntian & Chen, Fu & Li, Gang & Ristić, Bora & Mirchi, Ali & Qiyu, Tu & Madani, Kaveh, 2018. "Reform and renewables in China: The architecture of Yunnan's hydropower dominated electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 682-693.
    6. Liu, Weifeng & Zhu, Feilin & Zhao, Tongtiegang & Wang, Hao & Lei, Xiaohui & Zhong, Ping-an & Fthenakis, Vasilis, 2020. "Optimal stochastic scheduling of hydropower-based compensation for combined wind and photovoltaic power outputs," Applied Energy, Elsevier, vol. 276(C).
    7. Xu, Beibei & Chen, Diyi & Venkateshkumar, M. & Xiao, Yu & Yue, Yan & Xing, Yanqiu & Li, Peiquan, 2019. "Modeling a pumped storage hydropower integrated to a hybrid power system with solar-wind power and its stability analysis," Applied Energy, Elsevier, vol. 248(C), pages 446-462.
    8. Heydari, Azim & Majidi Nezhad, Meysam & Pirshayan, Elmira & Astiaso Garcia, Davide & Keynia, Farshid & De Santoli, Livio, 2020. "Short-term electricity price and load forecasting in isolated power grids based on composite neural network and gravitational search optimization algorithm," Applied Energy, Elsevier, vol. 277(C).
    9. Platero, C.A. & Nicolet, C. & Sánchez, J.A. & Kawkabani, B., 2014. "Increasing wind power penetration in autonomous power systems through no-flow operation of Pelton turbines," Renewable Energy, Elsevier, vol. 68(C), pages 515-523.
    10. Perers, Richard & Lundin, Urban & Leijon, Mats, 2007. "Development of synchronous generators for Swedish hydropower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 1008-1017, June.
    11. Mohamed, Amgad & Alamir, Mazen & Alloin, Quentin, 2020. "Generic modeling and speed control approach of hydraulic power plants: Start-up operating mode," Renewable Energy, Elsevier, vol. 160(C), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lianda Duan & Dekuan Wang & Guiping Wang & Changlin Han & Weijun Zhang & Xiaobo Liu & Cong Wang & Zheng Che & Chang Chen, 2022. "Piecewise Causality Study between Power Load and Vibration in Hydro-Turbine Generator Unit for a Low-Carbon Era," Energies, MDPI, vol. 15(3), pages 1-13, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Ignacio Sarasúa & Guillermo Martínez-Lucas & Carlos A. Platero & José Ángel Sánchez-Fernández, 2018. "Dual Frequency Regulation in Pumping Mode in a Wind–Hydro Isolated System," Energies, MDPI, vol. 11(11), pages 1-17, October.
    2. Gong, Yu & Liu, Pan & Ming, Bo & Li, Dingfang, 2021. "Identifying the effect of forecast uncertainties on hybrid power system operation: A case study of Longyangxia hydro–photovoltaic plant in China," Renewable Energy, Elsevier, vol. 178(C), pages 1303-1321.
    3. Lei, Liuwei & Li, Feng & Kheav, Kimleng & Jiang, Wei & Luo, Xingqi & Patelli, Edoardo & Xu, Beibei & Chen, Diyi, 2021. "A start-up optimization strategy of a hydroelectric generating system: From a symmetrical structure to asymmetric structure on diversion pipes," Renewable Energy, Elsevier, vol. 180(C), pages 1148-1165.
    4. Guillermo Martínez-Lucas & José Ignacio Sarasúa & José Ángel Sánchez-Fernández, 2018. "Frequency Regulation of a Hybrid Wind–Hydro Power Plant in an Isolated Power System," Energies, MDPI, vol. 11(1), pages 1-25, January.
    5. Zhao, Zhigao & Yang, Jiandong & Huang, Yifan & Yang, Weijia & Ma, Weichao & Hou, Liangyu & Chen, Man, 2021. "Improvement of regulation quality for hydro-dominated power system: quantifying oscillation characteristic and multi-objective optimization," Renewable Energy, Elsevier, vol. 168(C), pages 606-631.
    6. Alizadeh Bidgoli, Mohsen & Yang, Weijia & Ahmadian, Ali, 2020. "DFIM versus synchronous machine for variable speed pumped storage hydropower plants: A comparative evaluation of technical performance," Renewable Energy, Elsevier, vol. 159(C), pages 72-86.
    7. Han, Shuo & He, Mengjiao & Zhao, Ziwen & Chen, Diyi & Xu, Beibei & Jurasz, Jakub & Liu, Fusheng & Zheng, Hongxi, 2023. "Overcoming the uncertainty and volatility of wind power: Day-ahead scheduling of hydro-wind hybrid power generation system by coordinating power regulation and frequency response flexibility," Applied Energy, Elsevier, vol. 333(C).
    8. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zhao, Zhigao & Yang, Jiandong, 2023. "Transient analysis of a hydropower plant with a super-long headrace tunnel during load acceptance: Instability mechanism and measurement verification," Energy, Elsevier, vol. 263(PA).
    9. Opgrand, Jeff & Preckel, Paul V. & Sparrow, F.T. & Thomas, Gregory & Loucks, Daniel P., 2020. "Restoring the natural flow regime of a large hydroelectric complex: Costs and considerations," Energy, Elsevier, vol. 190(C).
    10. Zhou, Yuzhou & Zhao, Jiexing & Zhai, Qiaozhu, 2021. "100% renewable energy: A multi-stage robust scheduling approach for cascade hydropower system with wind and photovoltaic power," Applied Energy, Elsevier, vol. 301(C).
    11. Usman, Muhammad & Khalid, Khaizran & Mehdi, Muhammad Abuzar, 2021. "What determines environmental deficit in Asia? Embossing the role of renewable and non-renewable energy utilization," Renewable Energy, Elsevier, vol. 168(C), pages 1165-1176.
    12. Li, Yan & Feng, Tian-tian & Liu, Li-li & Zhang, Meng-xi, 2023. "How do the electricity market and carbon market interact and achieve integrated development?--A bibliometric-based review," Energy, Elsevier, vol. 265(C).
    13. Quaranta, Emanuele & Muntean, Sebastian, 2023. "Wasted and excess energy in the hydropower sector: A European assessment of tailrace hydrokinetic potential, degassing-methane capture and waste-heat recovery," Applied Energy, Elsevier, vol. 329(C).
    14. Guo, Su & Zheng, Kun & He, Yi & Kurban, Aynur, 2023. "The artificial intelligence-assisted short-term optimal scheduling of a cascade hydro-photovoltaic complementary system with hybrid time steps," Renewable Energy, Elsevier, vol. 202(C), pages 1169-1189.
    15. Rezghi, Ali & Riasi, Alireza & Tazraei, Pedram, 2020. "Multi-objective optimization of hydraulic transient condition in a pump-turbine hydropower considering the wicket-gates closing law and the surge tank position," Renewable Energy, Elsevier, vol. 148(C), pages 478-491.
    16. Wu, Zhaoyuan & Zhou, Ming & Zhang, Ting & Li, Gengyin & Zhang, Yan & Liu, Xiaojuan, 2020. "Imbalance settlement evaluation for China's balancing market design via an agent-based model with a multiple criteria decision analysis method," Energy Policy, Elsevier, vol. 139(C).
    17. Rafael Sebastián & Antonio Nevado, 2020. "Study and Simulation of a Wind Hydro Isolated Microgrid," Energies, MDPI, vol. 13(22), pages 1-15, November.
    18. Yao, Xing & Yi, Bowen & Yu, Yang & Fan, Ying & Zhu, Lei, 2020. "Economic analysis of grid integration of variable solar and wind power with conventional power system," Applied Energy, Elsevier, vol. 264(C).
    19. Achitaev, Andrey A. & Suslov, Konstantin V. & Nazarychev, Alexander N. & Volkova, Irina O. & Kozhemyakin, Vyacheslav E. & Voloshin, Alexander A. & Minakov, Andrey V., 2022. "Application of electromagnetic continuous variable transmission in hydraulic turbines to increase stability of an off-grid power system," Renewable Energy, Elsevier, vol. 196(C), pages 125-136.
    20. Xiang Wang & Le Guo & Jianjian Shen & Meiyan Kong & Xu Han, 2023. "Issues and Strategies for the Dispatching and Trading of the Three Gorges Large Hydropower System," Energies, MDPI, vol. 16(18), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:180:y:2021:i:c:p:1237-1247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.