IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v329y2023ics0306261922014702.html
   My bibliography  Save this article

Wasted and excess energy in the hydropower sector: A European assessment of tailrace hydrokinetic potential, degassing-methane capture and waste-heat recovery

Author

Listed:
  • Quaranta, Emanuele
  • Muntean, Sebastian

Abstract

Hydropower is the giant of the renewable energy sector, and a well-established source of energy. In order to reduce the impacts of new barriers in rivers, the retrofitting of existing facilities with new technologies is deserving a great attention, especially when hydropower technologies are hybridized with other energy devices. In this study a European-scale assessment is carried out to quantify the potential associated to the exploitation of the excess (and wasted) energy sources in existing hydropower facilities. Three sources of energy are assessed: 1) the hydrokinetic energy of the tailrace water flow and the potential energy associated to the unexploited head below Pelton units, 2) the thermal energy of the cooling system of the electric generators and 3) the chemical energy of the degassing methane. Considering the available technology, 5.0 TWh/y of heat could be generated by exploiting the thermal energy of the cooling system. 2.4 TWh/y of electricity could be generated by harnessing the hydrokinetic energy at the tailrace; this would correspond to thousands of micro hydropower plants 100 kW each), and would avoid new installations in natural freshwater systems. Degassing methane is relevant at the global scale, especially in tropical reservoirs. In Europe 5,950 tons/year of degassing methane could be theoretically captured, since minor methane emissions from reservoirs occur. R&D activities are ongoing to overcome the current technological limitations and high installation costs. Different novelties are included in this study: for the first time, a continental assessment is carried out on this topic, establishing methodologies that could be implemented at any regional scale. For each technology, a literature review is carried out to collect data and case studies. Data to estimate the number of units and the operating range of Francis, Kaplan and Pelton turbines in Europe, and equations to estimate the degassing methane emissions, are provided. These data can be used for similar large scale assessments.

Suggested Citation

  • Quaranta, Emanuele & Muntean, Sebastian, 2023. "Wasted and excess energy in the hydropower sector: A European assessment of tailrace hydrokinetic potential, degassing-methane capture and waste-heat recovery," Applied Energy, Elsevier, vol. 329(C).
  • Handle: RePEc:eee:appene:v:329:y:2023:i:c:s0306261922014702
    DOI: 10.1016/j.apenergy.2022.120213
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922014702
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120213?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wagner, Beatrice & Hauer, Christoph & Schoder, Angelika & Habersack, Helmut, 2015. "A review of hydropower in Austria: Past, present and future development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 304-314.
    2. Emanuele Quaranta & Katalin Bódis & Egidijus Kasiulis & Aonghus McNabola & Alberto Pistocchi, 2022. "Is There a Residual and Hidden Potential for Small and Micro Hydropower in Europe? A Screening-Level Regional Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1745-1762, April.
    3. Kałuża, Tomasz & Hämmerling, Mateusz & Zawadzki, Paweł & Czekała, Wojciech & Kasperek, Robert & Sojka, Mariusz & Mokwa, Marian & Ptak, Mariusz & Szkudlarek, Arkadiusz & Czechlowski, Mirosław & Dach, J, 2022. "The hydropower sector in Poland: Historical development and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Kaldellis, J.K., 2008. "Critical evaluation of the hydropower applications in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 218-234, January.
    5. Guney, Mukrimin Sevket, 2011. "Evaluation and measures to increase performance coefficient of hydrokinetic turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3669-3675.
    6. Liu, Yue & Packey, Daniel J., 2014. "Combined-cycle hydropower systems – The potential of applying hydrokinetic turbines in the tailwaters of existing conventional hydropower stations," Renewable Energy, Elsevier, vol. 66(C), pages 228-231.
    7. Liming, Zhai & Yongyao, Luo & Zhengwei, Wang & Xin, Liu & Yexiang, Xiao, 2017. "A review on the large tilting pad thrust bearings in the hydropower units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1182-1198.
    8. Montoya Ramírez, Rubén D. & Cuervo, Felipe Isaza & Monsalve Rico, César Antonio, 2016. "Technical and financial valuation of hydrokinetic power in the discharge channels of large hydropower plants in Colombia: A case study," Renewable Energy, Elsevier, vol. 99(C), pages 136-147.
    9. Wörman, Anders & Uvo, Cintia Bertacchi & Brandimarte, Luigia & Busse, Stefan & Crochemore, Louise & Lopez, Marc Girons & Hao, Shuang & Pechlivanidis, Ilias & Riml, Joakim, 2020. "Virtual energy storage gain resulting from the spatio-temporal coordination of hydropower over Europe," Applied Energy, Elsevier, vol. 272(C).
    10. Goričanec, D. & Pozeb, V. & Tomšič, L. & Trop, P., 2014. "Exploitation of the waste-heat from hydro power plants," Energy, Elsevier, vol. 77(C), pages 220-225.
    11. Holanda, Patrícia da Silva & Blanco, Claudio José Cavalcante & Mesquita, André Luiz Amarante & Brasil Junior, Antônio César Pinho & de Figueiredo, Nelio Moura & Macêdo, Emanuel Negrão & Secretan, Yves, 2017. "Assessment of hydrokinetic energy resources downstream of hydropower plants," Renewable Energy, Elsevier, vol. 101(C), pages 1203-1214.
    12. Perers, Richard & Lundin, Urban & Leijon, Mats, 2007. "Development of synchronous generators for Swedish hydropower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 1008-1017, June.
    13. Bambace, L.A.W. & Ramos, F.M. & Lima, I.B.T. & Rosa, R.R., 2007. "Mitigation and recovery of methane emissions from tropical hydroelectric dams," Energy, Elsevier, vol. 32(6), pages 1038-1046.
    14. Livia Pitorac & Kaspar Vereide & Leif Lia, 2020. "Technical Review of Existing Norwegian Pumped Storage Plants," Energies, MDPI, vol. 13(18), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stucchi, Leonardo & Bocchiola, Daniele & Simoni, Camilla & Ambrosini, Stefano Romano & Bianchi, Alberto & Rosso, Renzo, 2023. "Future hydropower production under the framework of NextGenerationEU: The case of Santa Giustina reservoir in Italian Alps," Renewable Energy, Elsevier, vol. 215(C).
    2. Chunhong Liu & Shisong Jiang & Hanfei Zhang & Ziyi Lu & Umberto Desideri, 2024. "China and Italy’s Energy Development Trajectories: Current Landscapes and Future Cooperation Potential," Energies, MDPI, vol. 17(4), pages 1-18, February.
    3. Emanuele Quaranta, 2023. "Lubricant Oil Consumption and Opportunities for Oil-Free Turbines in the Hydropower Sector: A European Assessment," Energies, MDPI, vol. 16(2), pages 1-7, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santos, Ivan Felipe Silva dos & Camacho, Ramiro Gustavo Ramirez & Tiago Filho, Geraldo Lúcio & Botan, Antonio Carlos Barkett & Vinent, Barbara Amoeiro, 2019. "Energy potential and economic analysis of hydrokinetic turbines implementation in rivers: An approach using numerical predictions (CFD) and experimental data," Renewable Energy, Elsevier, vol. 143(C), pages 648-662.
    2. Holanda, Patrícia da Silva & Blanco, Claudio José Cavalcante & Mesquita, André Luiz Amarante & Brasil Junior, Antônio César Pinho & de Figueiredo, Nelio Moura & Macêdo, Emanuel Negrão & Secretan, Yves, 2017. "Assessment of hydrokinetic energy resources downstream of hydropower plants," Renewable Energy, Elsevier, vol. 101(C), pages 1203-1214.
    3. Huđek, Helena & Žganec, Krešimir & Pusch, Martin T., 2020. "A review of hydropower dams in Southeast Europe – distribution, trends and availability of monitoring data using the example of a multinational Danube catchment subarea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    4. Mosier, Thomas M. & Sharp, Kendra V. & Hill, David F., 2016. "The Hydropower Potential Assessment Tool (HPAT): Evaluation of run-of-river resource potential for any global land area and application to Falls Creek, Oregon, USA," Renewable Energy, Elsevier, vol. 97(C), pages 492-503.
    5. Jiang, Hanchen & Qiang, Maoshan & Lin, Peng, 2016. "A topic modeling based bibliometric exploration of hydropower research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 226-237.
    6. Fernández-Blanco, R. & Kavvadias, K. & Hidalgo González, I., 2017. "Quantifying the water-power linkage on hydrothermal power systems: A Greek case study," Applied Energy, Elsevier, vol. 203(C), pages 240-253.
    7. Abutunis, A. & Taylor, G. & Fal, M. & Chandrashekhara, K., 2020. "Experimental evaluation of coaxial horizontal axis hydrokinetic composite turbine system," Renewable Energy, Elsevier, vol. 157(C), pages 232-245.
    8. Wang, Cong & Wang, Dekuan & Zhang, Jianming, 2021. "Experimental study on isolated operation of hydro-turbine governing system of Lunzua hydropower station in Zambia," Renewable Energy, Elsevier, vol. 180(C), pages 1237-1247.
    9. Veronika Varvařovská & Michaela Staňková, 2021. "Does the Involvement of "Green Energy" Increase the Productivity of Companies in the Production of the Electricity Sector?," European Journal of Business Science and Technology, Mendel University in Brno, Faculty of Business and Economics, vol. 7(2), pages 152-164.
    10. Mahmud, M. A. Parvez & Huda, Nazmul & Farjana, Shahjadi Hisan & Lang, Candace, 2019. "A strategic impact assessment of hydropower plants in alpine and non-alpine areas of Europe," Applied Energy, Elsevier, vol. 250(C), pages 198-214.
    11. Yunfei Wu & Jianfeng Liu & Jian Zhou, 2022. "The Strategy of Considering the Participation of Doubly-Fed Pumped-Storage Units in Power Grid Frequency Regulation," Energies, MDPI, vol. 15(6), pages 1-16, March.
    12. Zafirakis, D. & Chalvatzis, K. & Kaldellis, J.K., 2013. "“Socially just” support mechanisms for the promotion of renewable energy sources in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 478-493.
    13. Talpur, Saifal, 2017. "Testing and model validation of round rotor synchronous generator (GENROU)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 880-887.
    14. Sharma, Raj Hari & Awal, Ripendra, 2013. "Hydropower development in Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 684-693.
    15. Kaldellis, J.K., 2011. "Critical evaluation of financial supporting schemes for wind-based projects: Case study Greece," Energy Policy, Elsevier, vol. 39(5), pages 2490-2500, May.
    16. Punys, Petras & Kasiulis, Egidijus & Kvaraciejus, Algis & Dumbrauskas, Antanas & Vyčienė, Gitana & Šilinis, Linas, 2017. "Impacts of the EU and national environmental legislation on tapping hydropower resources in Lithuania – A lowland country," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 495-504.
    17. Jie Sun & Yuquan Zhang & Bin Liu & Xinfeng Ge & Yuan Zheng & Emmanuel Fernandez-Rodriguez, 2022. "Research on Oil Mist Leakage of Bearing in Hydropower Station: A Review," Energies, MDPI, vol. 15(7), pages 1-24, April.
    18. Faruk Guner & Hilmi Zenk, 2020. "Experimental, Numerical and Application Analysis of Hydrokinetic Turbine Performance with Fixed Rotating Blades," Energies, MDPI, vol. 13(3), pages 1-15, February.
    19. Guittet, Mélanie & Capezzali, Massimiliano & Gaudard, Ludovic & Romerio, Franco & Vuille, François & Avellan, François, 2016. "Study of the drivers and asset management of pumped-storage power plants historical and geographical perspective," Energy, Elsevier, vol. 111(C), pages 560-579.
    20. Manzano-Agugliaro, Francisco & Taher, Myriam & Zapata-Sierra, Antonio & Juaidi, Adel & Montoya, Francisco G., 2017. "An overview of research and energy evolution for small hydropower in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 476-489.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:329:y:2023:i:c:s0306261922014702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.