IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v191y2022icp459-492.html
   My bibliography  Save this article

Short term scheduling of hydrothermal power systems with photovoltaic and pumped storage plants using quasi-oppositional turbulent water flow optimization

Author

Listed:
  • Sakthivel, V.P.
  • Thirumal, K.
  • Sathya, P.D.

Abstract

Owing to the environmental concerns and fossil fuel shortage, power generation from renewable energy source is becoming an alternative source and lead to hybrid power generations in the modern power system. The hybrid power systems are operated for efficient exploitation of clean and renewable energy. Consequently, optimal economic generation planning of hydrothermal plants with renewable energy sources constitutes the main thoughts of this research work. The novelty of this paper is to propose a new quasi-oppositional turbulent water flow optimization for the solution of hydrothermal generation scheduling problem with the integration of pumped storage and solar power systems, and to develop a hybrid power system model by taking into account the spillage effects of hydro plants, and the valve point loading effects, transmission losses and multi-fuel sources of thermal power plants. The effectiveness of the developed model is examined on a small, medium and realistic large-scale hybrid power systems and compared with the performance of other erstwhile approaches. Conclusively, the simulation studies show that: (1) the developed model affirms the maximum utilization of clean energy production, (2) the quasi-oppositional learning strategy unified with turbulent water flow optimization approach offers superior optimal solutions and computational efficiency in contrast with other whilom metaheuristic algorithms, and (3) precisely, the pollutant emissions can be reduced by 11.62 and 12.90% when thermal power generation is backed down by pumped storage power generation, and combined pumped storage and solar power generation respectively for the realistic large-scale hybrid power system. Critics of this study is that the proposed approach can offer better optimal solutions than other erstwhile approaches with regard to the solution quality and computational efficiency.

Suggested Citation

  • Sakthivel, V.P. & Thirumal, K. & Sathya, P.D., 2022. "Short term scheduling of hydrothermal power systems with photovoltaic and pumped storage plants using quasi-oppositional turbulent water flow optimization," Renewable Energy, Elsevier, vol. 191(C), pages 459-492.
  • Handle: RePEc:eee:renene:v:191:y:2022:i:c:p:459-492
    DOI: 10.1016/j.renene.2022.04.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122005110
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.04.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Basu, M., 2020. "Optimal generation scheduling of hydrothermal system with demand side management considering uncertainty and outage of renewable energy sources," Renewable Energy, Elsevier, vol. 146(C), pages 530-542.
    2. Li, Chaoshun & Wang, Wenxiao & Chen, Deshu, 2019. "Multi-objective complementary scheduling of hydro-thermal-RE power system via a multi-objective hybrid grey wolf optimizer," Energy, Elsevier, vol. 171(C), pages 241-255.
    3. Basu, Mousumi, 2022. "Fuel constrained short-term hydrothermal generation scheduling," Energy, Elsevier, vol. 239(PD).
    4. Reddy, S. Surender, 2017. "Optimal scheduling of thermal-wind-solar power system with storage," Renewable Energy, Elsevier, vol. 101(C), pages 1357-1368.
    5. Yin, Hao & Wu, Fei & Meng, Xin & Lin, Yicheng & Fan, Jingmin & Meng, Anbo, 2020. "Crisscross optimization based short-term hydrothermal generation scheduling with cascaded reservoirs," Energy, Elsevier, vol. 203(C).
    6. Feng, Chen & Zheng, Yuan & Li, Chaoshun & Mai, Zijun & Wu, Wei & Chen, Huixiang, 2021. "Cost advantage of adjustable-speed pumped storage unit for daily operation in distributed hybrid system," Renewable Energy, Elsevier, vol. 176(C), pages 1-10.
    7. Dubey, Hari Mohan & Pandit, Manjaree & Panigrahi, B.K., 2016. "Hydro-thermal-wind scheduling employing novel ant lion optimization technique with composite ranking index," Renewable Energy, Elsevier, vol. 99(C), pages 18-34.
    8. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2015. "Pumped storage-based standalone photovoltaic power generation system: Modeling and techno-economic optimization," Applied Energy, Elsevier, vol. 137(C), pages 649-659.
    9. Simab, Mohsen & Javadi, Mohammad Sadegh & Nezhad, Ali Esmaeel, 2018. "Multi-objective programming of pumped-hydro-thermal scheduling problem using normal boundary intersection and VIKOR," Energy, Elsevier, vol. 143(C), pages 854-866.
    10. Cheng, Chuntian & Su, Chengguo & Wang, Peilin & Shen, Jianjian & Lu, Jianyu & Wu, Xinyu, 2018. "An MILP-based model for short-term peak shaving operation of pumped-storage hydropower plants serving multiple power grids," Energy, Elsevier, vol. 163(C), pages 722-733.
    11. Chen, J.J. & Zhuang, Y.B. & Li, Y.Z. & Wang, P. & Zhao, Y.L. & Zhang, C.S., 2017. "Risk-aware short term hydro-wind-thermal scheduling using a probability interval optimization model," Applied Energy, Elsevier, vol. 189(C), pages 534-554.
    12. Yahia, Zakaria & Pradhan, Anup, 2020. "Simultaneous and sequential stochastic optimization approaches for pumped storage plant scheduling with random breakdowns," Energy, Elsevier, vol. 204(C).
    13. Jian, Jinbao & Pan, Shanshan & Yang, Linfeng, 2019. "Solution for short-term hydrothermal scheduling with a logarithmic size mixed-integer linear programming formulation," Energy, Elsevier, vol. 171(C), pages 770-784.
    14. Shilaja, C. & Ravi, K., 2017. "Optimization of emission/economic dispatch using euclidean affine flower pollination algorithm (eFPA) and binary FPA (BFPA) in solar photo voltaic generation," Renewable Energy, Elsevier, vol. 107(C), pages 550-566.
    15. Patwal, Rituraj Singh & Narang, Nitin & Garg, Harish, 2018. "A novel TVAC-PSO based mutation strategies algorithm for generation scheduling of pumped storage hydrothermal system incorporating solar units," Energy, Elsevier, vol. 142(C), pages 822-837.
    16. Suresh K. Damodaran & T. K. Sunil Kumar, 2018. "Hydro-Thermal-Wind Generation Scheduling Considering Economic and Environmental Factors Using Heuristic Algorithms," Energies, MDPI, vol. 11(2), pages 1-19, February.
    17. Alvarez, Gonzalo E., 2020. "Operation of pumped storage hydropower plants through optimization for power systems," Energy, Elsevier, vol. 202(C).
    18. Pérez-Díaz, Juan I. & Chazarra, M. & García-González, J. & Cavazzini, G. & Stoppato, A., 2015. "Trends and challenges in the operation of pumped-storage hydropower plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 767-784.
    19. Guo, Yi & Ming, Bo & Huang, Qiang & Wang, Yimin & Zheng, Xudong & Zhang, Wei, 2022. "Risk-averse day-ahead generation scheduling of hydro–wind–photovoltaic complementary systems considering the steady requirement of power delivery," Applied Energy, Elsevier, vol. 309(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Basu, Mousumi, 2022. "Fuel constrained short-term hydrothermal generation scheduling," Energy, Elsevier, vol. 239(PD).
    2. Daneshvar, Mohammadreza & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Asadi, Somayeh, 2020. "Two-stage stochastic programming model for optimal scheduling of the wind-thermal-hydropower-pumped storage system considering the flexibility assessment," Energy, Elsevier, vol. 193(C).
    3. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Li, Gang & Liu, Lingjun, 2022. "Impacts of different wind and solar power penetrations on cascade hydroplants operation," Renewable Energy, Elsevier, vol. 182(C), pages 227-244.
    4. Patwal, Rituraj Singh & Narang, Nitin, 2020. "Multi-objective generation scheduling of integrated energy system using fuzzy based surrogate worth trade-off approach," Renewable Energy, Elsevier, vol. 156(C), pages 864-882.
    5. Yahia, Zakaria & Pradhan, Anup, 2020. "Simultaneous and sequential stochastic optimization approaches for pumped storage plant scheduling with random breakdowns," Energy, Elsevier, vol. 204(C).
    6. Yang, Weijia & Yang, Jiandong, 2019. "Advantage of variable-speed pumped storage plants for mitigating wind power variations: Integrated modelling and performance assessment," Applied Energy, Elsevier, vol. 237(C), pages 720-732.
    7. Patwal, Rituraj Singh & Narang, Nitin & Garg, Harish, 2018. "A novel TVAC-PSO based mutation strategies algorithm for generation scheduling of pumped storage hydrothermal system incorporating solar units," Energy, Elsevier, vol. 142(C), pages 822-837.
    8. Zhao, Zhigao & Yang, Jiandong & Chung, C.Y. & Yang, Weijia & He, Xianghui & Chen, Man, 2021. "Performance enhancement of pumped storage units for system frequency support based on a novel small signal model," Energy, Elsevier, vol. 234(C).
    9. Chen, J.J. & Zhao, Y.L. & Peng, K. & Wu, P.Z., 2017. "Optimal trade-off planning for wind-solar power day-ahead scheduling under uncertainties," Energy, Elsevier, vol. 141(C), pages 1969-1981.
    10. Emmanouil, Stergios & Nikolopoulos, Efthymios I. & François, Baptiste & Brown, Casey & Anagnostou, Emmanouil N., 2021. "Evaluating existing water supply reservoirs as small-scale pumped hydroelectric storage options – A case study in Connecticut," Energy, Elsevier, vol. 226(C).
    11. Sakthivel, V.P. & Thirumal, K. & Sathya, P.D., 2022. "Quasi-oppositional turbulent water flow-based optimization for cascaded short term hydrothermal scheduling with valve-point effects and multiple fuels," Energy, Elsevier, vol. 251(C).
    12. Ji, Bin & Zhang, Binqiao & Yu, Samson S. & Zhang, Dezhi & Yuan, Xiaohui, 2021. "An enhanced Borg algorithmic framework for solving the hydro-thermal-wind Co-scheduling problem," Energy, Elsevier, vol. 218(C).
    13. Yin, Hao & Wu, Fei & Meng, Xin & Lin, Yicheng & Fan, Jingmin & Meng, Anbo, 2020. "Crisscross optimization based short-term hydrothermal generation scheduling with cascaded reservoirs," Energy, Elsevier, vol. 203(C).
    14. Chen, Sheng & Wang, Jing & Zhang, Jian & Yu, Xiaodong & He, Wei, 2020. "Transient behavior of two-stage load rejection for multiple units system in pumped storage plants," Renewable Energy, Elsevier, vol. 160(C), pages 1012-1022.
    15. Yuan, Wenlin & Wang, Xinqi & Su, Chengguo & Cheng, Chuntian & Liu, Zhe & Wu, Zening, 2021. "Stochastic optimization model for the short-term joint operation of photovoltaic power and hydropower plants based on chance-constrained programming," Energy, Elsevier, vol. 222(C).
    16. Zhang, Juntao & Cheng, Chuntian & Yu, Shen & Su, Huaying, 2022. "Chance-constrained co-optimization for day-ahead generation and reserve scheduling of cascade hydropower–variable renewable energy hybrid systems," Applied Energy, Elsevier, vol. 324(C).
    17. Petrollese, Mario & Seche, Pierluigi & Cocco, Daniele, 2019. "Analysis and optimization of solar-pumped hydro storage systems integrated in water supply networks," Energy, Elsevier, vol. 189(C).
    18. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    19. Khaloie, Hooman & Abdollahi, Amir & Shafie-khah, Miadreza & Anvari-Moghaddam, Amjad & Nojavan, Sayyad & Siano, Pierluigi & Catalão, João P.S., 2020. "Coordinated wind-thermal-energy storage offering strategy in energy and spinning reserve markets using a multi-stage model," Applied Energy, Elsevier, vol. 259(C).
    20. Basu, M., 2020. "Optimal generation scheduling of hydrothermal system with demand side management considering uncertainty and outage of renewable energy sources," Renewable Energy, Elsevier, vol. 146(C), pages 530-542.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:191:y:2022:i:c:p:459-492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.