IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v237y2019icp720-732.html
   My bibliography  Save this article

Advantage of variable-speed pumped storage plants for mitigating wind power variations: Integrated modelling and performance assessment

Author

Listed:
  • Yang, Weijia
  • Yang, Jiandong

Abstract

Developing the joint operation of hydro and variable renewable energy has emerged as a research trend, for handling the power variability. In recent years, variable-speed pumped storage plants (VSPSPs) have been proposed as an alternative to fixed-speed pumped storage plants, but VSPSPs require a higher investment cost for equipment. Hence, evaluating the advantages and demonstrating the value of VSPSPs are meaningful topics that have seldom been studied by quantitative analysis with a small timescale. In this paper, a performance assessment of VSPSPs in terms of power regulation for mitigating wind power variations is undertaken based on a timescale of seconds, and the assessment combines the analysis of physical features and the economic indicators regarding ancillary service markets. First, a numerical model integrating hydraulic-mechanical-electrical subsystems of VSPSPs with doubly fed induction machines is built with MATLAB/Simulink, and it is validated by on-site measurements of a Japanese VSPSP. Then, based on a Chinese VSPSP, a quantitative comparison between variable-speed units (VSUs) and fixed-speed units (FSUs) is conducted through four indicators based on ancillary service compensation in electricity markets in China and the USA. Twelve scenarios are investigated, including case studies based on measured wind power variations. The results show that the VSU outperforms the FSU by one order of magnitude in the aspect of power regulation performance: the maximum ratios between the VSU and the FSU of the four indicators (average of power difference, standard deviation of power difference, penalty energy, and power delay) are 3.92%, 7.85%, 3.92%, and 5.56%. VSUs not only stand out for contributing to power system stability but can also obtain a significantly higher assessment in the ancillary service of the electricity market from an economic perspective. These results could be an important source of support for the investment and development of variable-speed pumped storage technology.

Suggested Citation

  • Yang, Weijia & Yang, Jiandong, 2019. "Advantage of variable-speed pumped storage plants for mitigating wind power variations: Integrated modelling and performance assessment," Applied Energy, Elsevier, vol. 237(C), pages 720-732.
  • Handle: RePEc:eee:appene:v:237:y:2019:i:c:p:720-732
    DOI: 10.1016/j.apenergy.2018.12.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918319019
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.12.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deason, Wesley, 2018. "Comparison of 100% renewable energy system scenarios with a focus on flexibility and cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3168-3178.
    2. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2015. "Pumped storage-based standalone photovoltaic power generation system: Modeling and techno-economic optimization," Applied Energy, Elsevier, vol. 137(C), pages 649-659.
    3. Schmidt, J. & Kemmetmüller, W. & Kugi, A., 2017. "Modeling and static optimization of a variable speed pumped storage power plant," Renewable Energy, Elsevier, vol. 111(C), pages 38-51.
    4. José Ignacio Sarasúa & Juan Ignacio Pérez-Díaz & Blanca Torres Vara, 2015. "On the Implementation of Variable Speed in Pump-Turbine Units Providing Primary and Secondary Load-Frequency Control in Generating Mode," Energies, MDPI, vol. 8(12), pages 1-17, December.
    5. Iman-Eini, Hossein & Frey, David & Bacha, Seddik & Boudinet, Cedric & Schanen, Jean-Luc, 2019. "Evaluation of loss effect on optimum operation of variable speed micro-hydropower energy conversion systems," Renewable Energy, Elsevier, vol. 131(C), pages 1022-1034.
    6. Chang, Martin K. & Eichman, Joshua D. & Mueller, Fabian & Samuelsen, Scott, 2013. "Buffering intermittent renewable power with hydroelectric generation: A case study in California," Applied Energy, Elsevier, vol. 112(C), pages 1-11.
    7. Raineri, R. & Rios, S. & Schiele, D., 2006. "Technical and economic aspects of ancillary services markets in the electric power industry: an international comparison," Energy Policy, Elsevier, vol. 34(13), pages 1540-1555, September.
    8. Brouwer, Anne Sjoerd & van den Broek, Machteld & Seebregts, Ad & Faaij, André, 2015. "Operational flexibility and economics of power plants in future low-carbon power systems," Applied Energy, Elsevier, vol. 156(C), pages 107-128.
    9. Pérez-Díaz, Juan I. & Chazarra, M. & García-González, J. & Cavazzini, G. & Stoppato, A., 2015. "Trends and challenges in the operation of pumped-storage hydropower plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 767-784.
    10. Papaefthymiou, Stefanos V. & Lakiotis, Vasileios G. & Margaris, Ioannis D. & Papathanassiou, Stavros A., 2015. "Dynamic analysis of island systems with wind-pumped-storage hybrid power stations," Renewable Energy, Elsevier, vol. 74(C), pages 544-554.
    11. Ming, Bo & Liu, Pan & Guo, Shenglian & Zhang, Xiaoqi & Feng, Maoyuan & Wang, Xianxun, 2017. "Optimizing utility-scale photovoltaic power generation for integration into a hydropower reservoir by incorporating long- and short-term operational decisions," Applied Energy, Elsevier, vol. 204(C), pages 432-445.
    12. Wei Luo & Jianguo Jiang & He Liu, 2017. "Frequency-Adaptive Modified Comb-Filter-Based Phase-Locked Loop for a Doubly-Fed Adjustable-Speed Pumped-Storage Hydropower Plant under Distorted Grid Conditions," Energies, MDPI, vol. 10(6), pages 1-13, May.
    13. Widén, Joakim & Carpman, Nicole & Castellucci, Valeria & Lingfors, David & Olauson, Jon & Remouit, Flore & Bergkvist, Mikael & Grabbe, Mårten & Waters, Rafael, 2015. "Variability assessment and forecasting of renewables: A review for solar, wind, wave and tidal resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 356-375.
    14. David Elliott, 2016. "A balancing act for renewables," Nature Energy, Nature, vol. 1(1), pages 1-3, January.
    15. Kaldellis, J.K. & Kapsali, M. & Kavadias, K.A., 2010. "Energy balance analysis of wind-based pumped hydro storage systems in remote island electrical networks," Applied Energy, Elsevier, vol. 87(8), pages 2427-2437, August.
    16. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2015. "Optimal design of an autonomous solar–wind-pumped storage power supply system," Applied Energy, Elsevier, vol. 160(C), pages 728-736.
    17. Kocaman, Ayse Selin & Modi, Vijay, 2017. "Value of pumped hydro storage in a hybrid energy generation and allocation system," Applied Energy, Elsevier, vol. 205(C), pages 1202-1215.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao An & Jiandong Yang & Weijia Yang & Yuanchu Cheng & Yumin Peng, 2019. "An Improved Frequency Dead Zone with Feed-Forward Control for Hydropower Units: Performance Evaluation of Primary Frequency Control," Energies, MDPI, vol. 12(8), pages 1-25, April.
    2. Liu, Dong & Wang, Xin & Peng, Yunshui & Zhang, Hui & Xiao, Zhihuai & Han, Xiangdong & Malik, O.P., 2020. "Stability analysis of hydropower units under full operating conditions considering turbine nonlinearity," Renewable Energy, Elsevier, vol. 154(C), pages 723-742.
    3. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    4. Alizadeh Bidgoli, Mohsen & Yang, Weijia & Ahmadian, Ali, 2020. "DFIM versus synchronous machine for variable speed pumped storage hydropower plants: A comparative evaluation of technical performance," Renewable Energy, Elsevier, vol. 159(C), pages 72-86.
    5. Yang, Weijia & Norrlund, Per & Bladh, Johan & Yang, Jiandong & Lundin, Urban, 2018. "Hydraulic damping mechanism of low frequency oscillations in power systems: Quantitative analysis using a nonlinear model of hydropower plants," Applied Energy, Elsevier, vol. 212(C), pages 1138-1152.
    6. Chen, Sheng & Wang, Jing & Zhang, Jian & Yu, Xiaodong & He, Wei, 2020. "Transient behavior of two-stage load rejection for multiple units system in pumped storage plants," Renewable Energy, Elsevier, vol. 160(C), pages 1012-1022.
    7. Petrollese, Mario & Seche, Pierluigi & Cocco, Daniele, 2019. "Analysis and optimization of solar-pumped hydro storage systems integrated in water supply networks," Energy, Elsevier, vol. 189(C).
    8. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    9. Katsaprakakis, Dimitris Al. & Dakanali, Irini & Condaxakis, Constantinos & Christakis, Dimitris G., 2019. "Comparing electricity storage technologies for small insular grids," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Ak{i}n Tac{s}cikaraou{g}lu & Ozan Erdinc{c}, 2018. "A Profit Optimization Approach Based on the Use of Pumped-Hydro Energy Storage Unit and Dynamic Pricing," Papers 1806.05211, arXiv.org.
    11. Vasudevan, Krishnakumar R. & Ramachandaramurthy, Vigna K. & Venugopal, Gomathi & Ekanayake, J.B. & Tiong, S.K., 2021. "Variable speed pumped hydro storage: A review of converters, controls and energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Emmanouil, Stergios & Nikolopoulos, Efthymios I. & François, Baptiste & Brown, Casey & Anagnostou, Emmanouil N., 2021. "Evaluating existing water supply reservoirs as small-scale pumped hydroelectric storage options – A case study in Connecticut," Energy, Elsevier, vol. 226(C).
    13. Jakub Jurasz & Alexander Kies, 2018. "Day-Ahead Probabilistic Model for Scheduling the Operation of a Wind Pumped-Storage Hybrid Power Station: Overcoming Forecasting Errors to Ensure Reliability of Supply to the Grid," Sustainability, MDPI, vol. 10(6), pages 1-21, June.
    14. Jurasz, Jakub & Mikulik, Jerzy & Krzywda, Magdalena & Ciapała, Bartłomiej & Janowski, Mirosław, 2018. "Integrating a wind- and solar-powered hybrid to the power system by coupling it with a hydroelectric power station with pumping installation," Energy, Elsevier, vol. 144(C), pages 549-563.
    15. Shabani, Masoume & Mahmoudimehr, Javad, 2018. "Techno-economic role of PV tracking technology in a hybrid PV-hydroelectric standalone power system," Applied Energy, Elsevier, vol. 212(C), pages 84-108.
    16. Javed, Muhammad Shahzad & Zhong, Dan & Ma, Tao & Song, Aotian & Ahmed, Salman, 2020. "Hybrid pumped hydro and battery storage for renewable energy based power supply system," Applied Energy, Elsevier, vol. 257(C).
    17. Weibel, Sebastian & Madlener, Reinhard, 2015. "Cost-Effective Design of Ringwall Storage Hybrid Power Plants: A Real Options Analysis," FCN Working Papers 17/2013, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    18. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    19. Sakthivel, V.P. & Thirumal, K. & Sathya, P.D., 2022. "Short term scheduling of hydrothermal power systems with photovoltaic and pumped storage plants using quasi-oppositional turbulent water flow optimization," Renewable Energy, Elsevier, vol. 191(C), pages 459-492.
    20. Shabani, Masoume & Mahmoudimehr, Javad, 2019. "Influence of climatological data records on design of a standalone hybrid PV-hydroelectric power system," Renewable Energy, Elsevier, vol. 141(C), pages 181-194.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:237:y:2019:i:c:p:720-732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.