IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i9p2308-d1647065.html
   My bibliography  Save this article

Research on Day-Ahead Optimal Scheduling of Wind–PV–Thermal–Pumped Storage Based on the Improved Multi-Objective Jellyfish Search Algorithm

Author

Listed:
  • Yunfei Hu

    (School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China
    Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China)

  • Kefei Zhang

    (School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China
    Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China)

  • Sheng Liu

    (School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China
    Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China)

  • Zhong Wang

    (School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China
    Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China)

Abstract

As the share of renewable energy in modern power systems continues to grow, its inherent uncertainty and variability pose severe challenges to grid stability and the accuracy of traditional thermal power dispatch. To address this issue, this study fully exploits the fast response and flexible operation of variable-speed pumped storage (VS-PS) by developing a day-ahead scheduling model for a wind–photovoltaic–thermal–VS-PS system. The optimization model aims to minimize system operating costs, carbon emissions, and thermal power output fluctuations, while maximizing the regulation flexibility of the VS-PS plant. It is assessed using the improved multi-objective jellyfish search (IMOJS) algorithm, and its effectiveness is demonstrated through comparison with a fixed-speed pumped storage (FS-PS) system. Simulation results show that the proposed model significantly outperforms the traditional FS-PS system: it increases renewable energy accommodation capacity by an average of 68.51%, reduces total operating costs by 14.13%, and lowers carbon emissions by 3.63%.

Suggested Citation

  • Yunfei Hu & Kefei Zhang & Sheng Liu & Zhong Wang, 2025. "Research on Day-Ahead Optimal Scheduling of Wind–PV–Thermal–Pumped Storage Based on the Improved Multi-Objective Jellyfish Search Algorithm," Energies, MDPI, vol. 18(9), pages 1-38, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2308-:d:1647065
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/9/2308/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/9/2308/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Ziwen & Yuan, Yichen & He, Mengjiao & Jurasz, Jakub & Wang, Jianan & Egusquiza, Mònica & Egusquiza, Eduard & Xu, Beibei & Chen, Diyi, 2022. "Stability and efficiency performance of pumped hydro energy storage system for higher flexibility," Renewable Energy, Elsevier, vol. 199(C), pages 1482-1494.
    2. Liu, Jia & Ma, Tao & Wu, Huijun & Yang, Hongxing, 2023. "Study on optimum energy fuel mix for urban cities integrated with pumped hydro storage and green vehicles," Applied Energy, Elsevier, vol. 331(C).
    3. Yan Yang & Qingyu Wei & Shanke Liu & Liang Zhao, 2022. "Distribution Strategy Optimization of Standalone Hybrid WT/PV System Based on Different Solar and Wind Resources for Rural Applications," Energies, MDPI, vol. 15(14), pages 1-21, July.
    4. Ren, Yan & Sun, Ketao & Zhang, Kai & Han, Yuping & Zhang, Haonan & Wang, Meijing & Jing, Xiang & Mo, Juhua & Zou, Wenhang & Xing, Xinyang, 2024. "Optimization of the capacity configuration of an abandoned mine pumped storage/wind/photovoltaic integrated system," Applied Energy, Elsevier, vol. 374(C).
    5. Lyu, Xiangmei & Liu, Tianqi & Liu, Xuan & He, Chuan & Nan, Lu & Zeng, Hong, 2023. "Low-carbon robust economic dispatch of park-level integrated energy system considering price-based demand response and vehicle-to-grid," Energy, Elsevier, vol. 263(PB).
    6. Patwal, Rituraj Singh & Narang, Nitin, 2020. "Multi-objective generation scheduling of integrated energy system using fuzzy based surrogate worth trade-off approach," Renewable Energy, Elsevier, vol. 156(C), pages 864-882.
    7. Peiyu Zhao & Haipeng Nan & Qingsen Cai & Chunyang Gao & Luochang Wu, 2024. "A Data-Driven Predictive Control Method for Modeling Doubly-Fed Variable-Speed Pumped Storage Units," Energies, MDPI, vol. 17(19), pages 1-20, September.
    8. Connolly, D. & Lund, H. & Mathiesen, B.V. & Pican, E. & Leahy, M., 2012. "The technical and economic implications of integrating fluctuating renewable energy using energy storage," Renewable Energy, Elsevier, vol. 43(C), pages 47-60.
    9. Ali M. Eltamaly, 2021. "A Novel Strategy for Optimal PSO Control Parameters Determination for PV Energy Systems," Sustainability, MDPI, vol. 13(2), pages 1-28, January.
    10. Shyam, B. & Kanakasabapathy, P., 2022. "Feasibility of floating solar PV integrated pumped storage system for a grid-connected microgrid under static time of day tariff environment: A case study from India," Renewable Energy, Elsevier, vol. 192(C), pages 200-215.
    11. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2015. "Optimal design of an autonomous solar–wind-pumped storage power supply system," Applied Energy, Elsevier, vol. 160(C), pages 728-736.
    12. Kocaman, Ayse Selin & Modi, Vijay, 2017. "Value of pumped hydro storage in a hybrid energy generation and allocation system," Applied Energy, Elsevier, vol. 205(C), pages 1202-1215.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    2. Yang, Weijia & Yang, Jiandong, 2019. "Advantage of variable-speed pumped storage plants for mitigating wind power variations: Integrated modelling and performance assessment," Applied Energy, Elsevier, vol. 237(C), pages 720-732.
    3. Solomon, A.A. & Kammen, Daniel M. & Callaway, D., 2016. "Investigating the impact of wind–solar complementarities on energy storage requirement and the corresponding supply reliability criteria," Applied Energy, Elsevier, vol. 168(C), pages 130-145.
    4. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    5. Zhang, Xiaofeng & Zhan, Yu & Zhao, Tingbo & Mei, Jin & Jiao, Fan & Zeng, Rong & Sun, Xiaoqin & Wang, Meng, 2024. "Three-stage optimization of integrated energy system considering source/load uncertainties and orderly charging of NEVs," Energy, Elsevier, vol. 313(C).
    6. Bhattacharjee, Subhadeep & Nayak, Pabitra Kumar, 2019. "PV-pumped energy storage option for convalescing performance of hydroelectric station under declining precipitation trend," Renewable Energy, Elsevier, vol. 135(C), pages 288-302.
    7. Arsenio Barbón & Ángel Gutiérrez & Luis Bayón & Covadonga Bayón-Cueli & Javier Aparicio-Bermejo, 2023. "Economic Analysis of a Pumped Hydroelectric Storage-Integrated Floating PV System in the Day-Ahead Iberian Electricity Market," Energies, MDPI, vol. 16(4), pages 1-24, February.
    8. Shabani, Masoume & Mahmoudimehr, Javad, 2018. "Techno-economic role of PV tracking technology in a hybrid PV-hydroelectric standalone power system," Applied Energy, Elsevier, vol. 212(C), pages 84-108.
    9. Javed, Muhammad Shahzad & Zhong, Dan & Ma, Tao & Song, Aotian & Ahmed, Salman, 2020. "Hybrid pumped hydro and battery storage for renewable energy based power supply system," Applied Energy, Elsevier, vol. 257(C).
    10. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Vivar, M. & H, Sharon & Fuentes, M., 2024. "Photovoltaic system adoption in water related technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    12. Koh, Rachel & Kern, Jordan & Galelli, Stefano, 2022. "Hard-coupling water and power system models increases the complementarity of renewable energy sources," Applied Energy, Elsevier, vol. 321(C).
    13. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    14. Chen, Sheng & Wang, Jing & Zhang, Jian & Yu, Xiaodong & He, Wei, 2020. "Transient behavior of two-stage load rejection for multiple units system in pumped storage plants," Renewable Energy, Elsevier, vol. 160(C), pages 1012-1022.
    15. Chen, Yang & Odukomaiya, Adewale & Kassaee, Saiid & O’Connor, Patrick & Momen, Ayyoub M. & Liu, Xiaobing & Smith, Brennan T., 2019. "Preliminary analysis of market potential for a hydropneumatic ground-level integrated diverse energy storage system," Applied Energy, Elsevier, vol. 242(C), pages 1237-1247.
    16. Yurter, Gulin & Nadar, Emre & Kocaman, Ayse Selin, 2024. "The impact of pumped hydro energy storage configurations on investment planning of hybrid systems with renewables," Renewable Energy, Elsevier, vol. 222(C).
    17. Li, Wanying & Dong, Fugui & Liu, Jiamei & Wang, Peijun & Zhao, Xinru, 2024. "A three-stage decision-making study on capacity configuration of hydropower-wind-photovoltaic-storage complementary systems considering uncertainty," Energy, Elsevier, vol. 313(C).
    18. Zhang, Boqun & Wang, Yuanfeng & Pan, Lei & Guo, Xiaohui & Liu, Yinshan & Shi, Chengcheng & Xue, Shaoqin & Wang, Liping & Chang, Xinlei & Fan, Lei, 2025. "Net zero carbon park planning framework: Methodology, application, and economic feasibility analysis," Energy, Elsevier, vol. 325(C).
    19. Shabani, Masoume & Mahmoudimehr, Javad, 2019. "Influence of climatological data records on design of a standalone hybrid PV-hydroelectric power system," Renewable Energy, Elsevier, vol. 141(C), pages 181-194.
    20. Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2308-:d:1647065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.