IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1705-d1062311.html
   My bibliography  Save this article

Economic Analysis of a Pumped Hydroelectric Storage-Integrated Floating PV System in the Day-Ahead Iberian Electricity Market

Author

Listed:
  • Arsenio Barbón

    (Department of Electrical Engineering, University of Oviedo, 33003 Oviedo, Spain)

  • Ángel Gutiérrez

    (Polytechnic School of Engineering of Gijón, University of Oviedo, 33003 Oviedo, Spain)

  • Luis Bayón

    (Department of Mathematics, University of Oviedo, 33003 Oviedo, Spain)

  • Covadonga Bayón-Cueli

    (Det Norske Veritas (DNV) UK Limited, Department of Energy Systems, OPEX, Aberdeen AB10 1UQ, UK)

  • Javier Aparicio-Bermejo

    (Business Development Iberia Northwest Area, Enel Green Power, 28014 Madrid, Spain)

Abstract

This study identifies the optimal operational strategy for floating photovoltaic power plants and pumped hydroelectric power plants in the day-ahead Iberian electricity market. Different operating scenarios were analysed based on forecast accuracy in addition to any deviations occurring in the day-ahead market, taking into account the rules of the electricity market and the technical operational limitations of both plants. These scenarios show the choice between the independent mode of operation and the joint mode of operation of both plants. Five scenarios have been studied, with upward and downward deviations of 5 % , 10 % , 25 % and 50 % considered. These scenarios can be classified into two groups. If there are deviation penalties, group 1; or without deviation penalties, group 2. Scenarios 3 and 4 belong to the first group and scenarios 1, 2 and 5 to the second group. In the scenarios of the first group, the price deviations are used, and in the scenarios of the second group, the marginal market price is used. The economic benefit of the scenarios with deviation penalties is obtained in the joint operation mode of both plants. Economic benefits of up to 35% are obtained. In contrast, in the scenarios where there are no deviation penalties, the independent mode of operation is the optimum. The reason for this is the low efficiency of the pumping process. In this case, economic benefits of 1.6% are obtained. This study can be used to guide the decision-making process in the operation of both plants in order to maximise the economic benefit.

Suggested Citation

  • Arsenio Barbón & Ángel Gutiérrez & Luis Bayón & Covadonga Bayón-Cueli & Javier Aparicio-Bermejo, 2023. "Economic Analysis of a Pumped Hydroelectric Storage-Integrated Floating PV System in the Day-Ahead Iberian Electricity Market," Energies, MDPI, vol. 16(4), pages 1-24, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1705-:d:1062311
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1705/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1705/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alberto Ghigo & Emilio Faraggiana & Massimo Sirigu & Giuliana Mattiazzo & Giovanni Bracco, 2022. "Design and Analysis of a Floating Photovoltaic System for Offshore Installation: The Case Study of Lampedusa," Energies, MDPI, vol. 15(23), pages 1-30, November.
    2. Zhao, Ziwen & Yuan, Yichen & He, Mengjiao & Jurasz, Jakub & Wang, Jianan & Egusquiza, Mònica & Egusquiza, Eduard & Xu, Beibei & Chen, Diyi, 2022. "Stability and efficiency performance of pumped hydro energy storage system for higher flexibility," Renewable Energy, Elsevier, vol. 199(C), pages 1482-1494.
    3. Cazzaniga, R. & Cicu, M. & Rosa-Clot, M. & Rosa-Clot, P. & Tina, G.M. & Ventura, C., 2018. "Floating photovoltaic plants: Performance analysis and design solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1730-1741.
    4. Barbón, A. & Ayuso, P. Fortuny & Bayón, L. & Silva, C.A., 2021. "A comparative study between racking systems for photovoltaic power systems," Renewable Energy, Elsevier, vol. 180(C), pages 424-437.
    5. Kalogirou, Soteris A. & Agathokleous, Rafaela & Panayiotou, Gregoris, 2013. "On-site PV characterization and the effect of soiling on their performance," Energy, Elsevier, vol. 51(C), pages 439-446.
    6. Claus, R. & López, M., 2022. "Key issues in the design of floating photovoltaic structures for the marine environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    7. Arsenio Barbón & Luis Bayón & Guzmán Díaz & Carlos A. Silva, 2022. "Investigation of the Effect of Albedo in Photovoltaic Systems for Urban Applications: Case Study for Spain," Energies, MDPI, vol. 15(21), pages 1-20, October.
    8. Waithiru Charles Lawrence Kamuyu & Jong Rok Lim & Chang Sub Won & Hyung Keun Ahn, 2018. "Prediction Model of Photovoltaic Module Temperature for Power Performance of Floating PVs," Energies, MDPI, vol. 11(2), pages 1-13, February.
    9. Mattei, M. & Notton, G. & Cristofari, C. & Muselli, M. & Poggi, P., 2006. "Calculation of the polycrystalline PV module temperature using a simple method of energy balance," Renewable Energy, Elsevier, vol. 31(4), pages 553-567.
    10. Barbour, Edward & Wilson, I.A. Grant & Radcliffe, Jonathan & Ding, Yulong & Li, Yongliang, 2016. "A review of pumped hydro energy storage development in significant international electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 421-432.
    11. Bhattacharjee, Subhadeep & Nayak, Pabitra Kumar, 2019. "PV-pumped energy storage option for convalescing performance of hydroelectric station under declining precipitation trend," Renewable Energy, Elsevier, vol. 135(C), pages 288-302.
    12. Barbón, A. & Bayón-Cueli, C. & Bayón, L. & Carreira-Fontao, V., 2022. "A methodology for an optimal design of ground-mounted photovoltaic power plants," Applied Energy, Elsevier, vol. 314(C).
    13. Shyam, B. & Kanakasabapathy, P., 2022. "Feasibility of floating solar PV integrated pumped storage system for a grid-connected microgrid under static time of day tariff environment: A case study from India," Renewable Energy, Elsevier, vol. 192(C), pages 200-215.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    2. Barbón, A. & Fortuny Ayuso, P. & Bayón, L. & Silva, C.A., 2023. "Experimental and numerical investigation of the influence of terrain slope on the performance of single-axis trackers," Applied Energy, Elsevier, vol. 348(C).
    3. Rahaman, Md Atiqur & Chambers, Terrence L. & Fekih, Afef & Wiecheteck, Giovana & Carranza, Gabriel & Possetti, Gustavo Rafael Collere, 2023. "Floating photovoltaic module temperature estimation: Modeling and comparison," Renewable Energy, Elsevier, vol. 208(C), pages 162-180.
    4. Kulat, Muhammed Imran & Tosun, Kursad & Karaveli, Abdullah Bugrahan & Yucel, Ismail & Akinoglu, Bulent Gultekin, 2023. "A sound potential against energy dependency and climate change challenges: Floating photovoltaics on water reservoirs of Turkey," Renewable Energy, Elsevier, vol. 206(C), pages 694-709.
    5. Socrates Kaplanis & Eleni Kaplani & John K. Kaldellis, 2023. "PV Temperature Prediction Incorporating the Effect of Humidity and Cooling Due to Seawater Flow and Evaporation on Modules Simulating Floating PV Conditions," Energies, MDPI, vol. 16(12), pages 1-19, June.
    6. Md. Imamul Islam & Mohd Shawal Jadin & Ahmed Al Mansur & Nor Azwan Mohamed Kamari & Taskin Jamal & Molla Shahadat Hossain Lipu & Mohd Nurulakla Mohd Azlan & Mahidur R. Sarker & A. S. M. Shihavuddin, 2023. "Techno-Economic and Carbon Emission Assessment of a Large-Scale Floating Solar PV System for Sustainable Energy Generation in Support of Malaysia’s Renewable Energy Roadmap," Energies, MDPI, vol. 16(10), pages 1-32, May.
    7. Ateş, Ali Murat, 2022. "Unlocking the floating photovoltaic potential of Türkiye's hydroelectric power plants," Renewable Energy, Elsevier, vol. 199(C), pages 1495-1509.
    8. Evgeny Solomin & Evgeny Sirotkin & Erdem Cuce & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy, 2021. "Hybrid Floating Solar Plant Designs: A Review," Energies, MDPI, vol. 14(10), pages 1-25, May.
    9. Eleni Kaplani & Socrates Kaplanis, 2020. "Dynamic Electro-Thermal PV Temperature and Power Output Prediction Model for Any PV Geometries in Free-Standing and BIPV Systems Operating under Any Environmental Conditions," Energies, MDPI, vol. 13(18), pages 1-20, September.
    10. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    11. Dong Eun Jung & Chanuk Lee & Kee Han Kim & Sung Lok Do, 2020. "Development of a Predictive Model for a Photovoltaic Module’s Surface Temperature," Energies, MDPI, vol. 13(15), pages 1-18, August.
    12. Laura Essak & Aritra Ghosh, 2022. "Floating Photovoltaics: A Review," Clean Technol., MDPI, vol. 4(3), pages 1-18, August.
    13. Claus, R. & López, M., 2022. "Key issues in the design of floating photovoltaic structures for the marine environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    14. Socrates Kaplanis & Eleni Kaplani, 2018. "A New Dynamic Model to Predict Transient and Steady State PV Temperatures Taking into Account the Environmental Conditions," Energies, MDPI, vol. 12(1), pages 1-17, December.
    15. Barbón, A. & Carreira-Fontao, V. & Bayón, L. & Silva, C.A., 2023. "Optimal design and cost analysis of single-axis tracking photovoltaic power plants," Renewable Energy, Elsevier, vol. 211(C), pages 626-646.
    16. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    17. Bruno Cárdenas & Lawrie Swinfen-Styles & James Rouse & Seamus D. Garvey, 2021. "Short-, Medium-, and Long-Duration Energy Storage in a 100% Renewable Electricity Grid: A UK Case Study," Energies, MDPI, vol. 14(24), pages 1-28, December.
    18. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    19. Mayer, Martin János & Yang, Dazhi & Szintai, Balázs, 2023. "Comparing global and regional downscaled NWP models for irradiance and photovoltaic power forecasting: ECMWF versus AROME," Applied Energy, Elsevier, vol. 352(C).
    20. Guan, Yanling & Zhang, Hao & Xiao, Bin & Zhou, Zhi & Yan, Xuzhou, 2017. "In-situ investigation of the effect of dust deposition on the performance of polycrystalline silicon photovoltaic modules," Renewable Energy, Elsevier, vol. 101(C), pages 1273-1284.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1705-:d:1062311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.