IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v107y2017icp550-566.html
   My bibliography  Save this article

Optimization of emission/economic dispatch using euclidean affine flower pollination algorithm (eFPA) and binary FPA (BFPA) in solar photo voltaic generation

Author

Listed:
  • Shilaja, C.
  • Ravi, K.

Abstract

Economic dispatch is the optimal output for a number of electricity generating units, to meet the system load, at the lowest possible cost, subject to transmission and operational constraints. The different Economic Dispatch (ED) methods have been developed in order to deal with the challenge of continuous and sustainable power at an improved cost. The increase in cost depletion of non-renewable sources has forced us to use the renewable energy resource as an alternative energy source. For optimizing the Economic Dispatch problem, a new algorithm is proposed based on Combined Emission Economic Dispatch (CEED) for Photo Voltaic (PV) plants and thermal power generation units. In CEED approach for improvising the Economic Dispatch Euclidean Affine Flower Pollination Algorithm (eFPA) and Binary Flower Pollination Algorithm (BFPA) has been used for solving the optimization problem for twenty PV and five thermal generators are done with full solar radiations and with reduced solar radiation. Power demand data has been taken from India in the district of Tuticorin Thermal Power Station (TTPS). Simulation results are tested with IEEE 30 bus and IEEE 57 bus systems and the comparison has been made with existing algorithm to provide better results.

Suggested Citation

  • Shilaja, C. & Ravi, K., 2017. "Optimization of emission/economic dispatch using euclidean affine flower pollination algorithm (eFPA) and binary FPA (BFPA) in solar photo voltaic generation," Renewable Energy, Elsevier, vol. 107(C), pages 550-566.
  • Handle: RePEc:eee:renene:v:107:y:2017:i:c:p:550-566
    DOI: 10.1016/j.renene.2017.02.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811730099X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.02.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rajesh, K. & Bhuvanesh, A. & Kannan, S. & Thangaraj, C., 2016. "Least cost generation expansion planning with solar power plant using Differential Evolution algorithm," Renewable Energy, Elsevier, vol. 85(C), pages 677-686.
    2. Secui, Dinu Calin, 2015. "The chaotic global best artificial bee colony algorithm for the multi-area economic/emission dispatch," Energy, Elsevier, vol. 93(P2), pages 2518-2545.
    3. Modiri-Delshad, Mostafa & Rahim, Nasrudin Abd, 2014. "Solving non-convex economic dispatch problem via backtracking search algorithm," Energy, Elsevier, vol. 77(C), pages 372-381.
    4. Izadbakhsh, Maziar & Gandomkar, Majid & Rezvani, Alireza & Ahmadi, Abdollah, 2015. "Short-term resource scheduling of a renewable energy based micro grid," Renewable Energy, Elsevier, vol. 75(C), pages 598-606.
    5. Sivasubramani, S. & Swarup, K.S., 2010. "Hybrid SOA–SQP algorithm for dynamic economic dispatch with valve-point effects," Energy, Elsevier, vol. 35(12), pages 5031-5036.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Basu, M., 2021. "Heat and power generation augmentation planning of isolated microgrid," Energy, Elsevier, vol. 223(C).
    2. Basu, Mousumi, 2022. "Fuel constrained short-term hydrothermal generation scheduling," Energy, Elsevier, vol. 239(PD).
    3. Sakthivel, V.P. & Thirumal, K. & Sathya, P.D., 2022. "Short term scheduling of hydrothermal power systems with photovoltaic and pumped storage plants using quasi-oppositional turbulent water flow optimization," Renewable Energy, Elsevier, vol. 191(C), pages 459-492.
    4. Ziad M. Ali & Shady H. E. Abdel Aleem & Ahmed I. Omar & Bahaa Saad Mahmoud, 2022. "Economical-Environmental-Technical Operation of Power Networks with High Penetration of Renewable Energy Systems Using Multi-Objective Coronavirus Herd Immunity Algorithm," Mathematics, MDPI, vol. 10(7), pages 1-43, April.
    5. Basu, M., 2021. "Fuel constrained dynamic economic dispatch with demand side management," Energy, Elsevier, vol. 223(C).
    6. Qun Niu & Ming You & Zhile Yang & Yang Zhang, 2021. "Economic Emission Dispatch Considering Renewable Energy Resources—A Multi-Objective Cross Entropy Optimization Approach," Sustainability, MDPI, vol. 13(10), pages 1-33, May.
    7. Chen, Min-Rong & Zeng, Guo-Qiang & Lu, Kang-Di, 2019. "Constrained multi-objective population extremal optimization based economic-emission dispatch incorporating renewable energy resources," Renewable Energy, Elsevier, vol. 143(C), pages 277-294.
    8. Basu, M., 2020. "Optimal generation scheduling of hydrothermal system with demand side management considering uncertainty and outage of renewable energy sources," Renewable Energy, Elsevier, vol. 146(C), pages 530-542.
    9. Ismail Marouani & Tawfik Guesmi & Hsan Hadj Abdallah & Badr M. Alshammari & Khalid Alqunun & Ahmed S. Alshammari & Salem Rahmani, 2022. "Combined Economic Emission Dispatch with and without Consideration of PV and Wind Energy by Using Various Optimization Techniques: A Review," Energies, MDPI, vol. 15(12), pages 1-35, June.
    10. Kheshti, Mostafa & Ding, Lei & Ma, Shicong & Zhao, Bing, 2018. "Double weighted particle swarm optimization to non-convex wind penetrated emission/economic dispatch and multiple fuel option systems," Renewable Energy, Elsevier, vol. 125(C), pages 1021-1037.
    11. Basu, M., 2022. "Fuel constrained combined heat and power dynamic dispatch using horse herd optimization algorithm," Energy, Elsevier, vol. 246(C).
    12. Basu, Mousumi, 2023. "Fuel constrained commitment scheduling for combined heat and power dispatch incorporating electric vehicle parking lot," Energy, Elsevier, vol. 276(C).
    13. Fatima Zahra Harmouch & Ahmed F. Ebrahim & Mohammad Mahmoudian Esfahani & Nissrine Krami & Nabil Hmina & Osama A. Mohammed, 2019. "An Optimal Energy Management System for Real-Time Operation of Multiagent-Based Microgrids Using a T-Cell Algorithm," Energies, MDPI, vol. 12(15), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Canyun & Hu, Zhongbo & Su, Qinghua, 2022. "An adaptive hybrid backtracking search optimization algorithm for dynamic economic dispatch with valve-point effects," Energy, Elsevier, vol. 239(PE).
    2. Hu, Zhongbo & Dai, Canyun & Su, Qinghua, 2022. "Adaptive backtracking search optimization algorithm with a dual-learning strategy for dynamic economic dispatch with valve-point effects," Energy, Elsevier, vol. 248(C).
    3. Mohammadi-ivatloo, Behnam & Rabiee, Abbas & Soroudi, Alireza & Ehsan, Mehdi, 2012. "Imperialist competitive algorithm for solving non-convex dynamic economic power dispatch," Energy, Elsevier, vol. 44(1), pages 228-240.
    4. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Roosta, Alireza & Amiri, Babak, 2012. "A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch," Energy, Elsevier, vol. 42(1), pages 530-545.
    5. Nwulu, Nnamdi I. & Xia, Xiaohua, 2015. "Implementing a model predictive control strategy on the dynamic economic emission dispatch problem with game theory based demand response programs," Energy, Elsevier, vol. 91(C), pages 404-419.
    6. Berna Tektaş & Hasan Hüseyin Turan & Nihat Kasap & Ferhan Çebi & Dursun Delen, 2022. "A Fuzzy Prescriptive Analytics Approach to Power Generation Capacity Planning," Energies, MDPI, vol. 15(9), pages 1-26, April.
    7. Hannan, M.A. & Ali, Jamal A. & Mohamed, Azah & Hussain, Aini, 2018. "Optimization techniques to enhance the performance of induction motor drives: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1611-1626.
    8. Vitayasak, Srisatja & Pongcharoen, Pupong & Hicks, Chris, 2017. "A tool for solving stochastic dynamic facility layout problems with stochastic demand using either a Genetic Algorithm or modified Backtracking Search Algorithm," International Journal of Production Economics, Elsevier, vol. 190(C), pages 146-157.
    9. Rajesh, K. & Karthikeyan, K. & Kannan, S. & Thangaraj, C., 2016. "Generation expansion planning based on solar plants with storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 953-964.
    10. Fitiwi, Desta Z. & Olmos, L. & Rivier, M. & de Cuadra, F. & Pérez-Arriaga, I.J., 2016. "Finding a representative network losses model for large-scale transmission expansion planning with renewable energy sources," Energy, Elsevier, vol. 101(C), pages 343-358.
    11. Modiri-Delshad, Mostafa & Aghay Kaboli, S. Hr. & Taslimi-Renani, Ehsan & Rahim, Nasrudin Abd, 2016. "Backtracking search algorithm for solving economic dispatch problems with valve-point effects and multiple fuel options," Energy, Elsevier, vol. 116(P1), pages 637-649.
    12. Basu, M., 2023. "Multi-county combined heat and power dynamic economic emission dispatch incorporating electric vehicle parking lot," Energy, Elsevier, vol. 275(C).
    13. Aquila, Giancarlo & Souza Rocha, Luiz Célio & Rotela Junior, Paulo & Saab Junior, Joseph Youssif & de Sá Brasil Lima, João & Balestrassi, Pedro Paulo, 2020. "Economic planning of wind farms from a NBI-RSM-DEA multiobjective programming," Renewable Energy, Elsevier, vol. 158(C), pages 628-641.
    14. Mohammad Ali Taghikhani & Behnam Zangeneh, 2022. "Optimal energy scheduling of micro-grids considering the uncertainty of solar and wind renewable resources," Journal of Scheduling, Springer, vol. 25(5), pages 567-576, October.
    15. Jalali, Mehdi & Zare, Kazem & Seyedi, Heresh, 2017. "Strategic decision-making of distribution network operator with multi-microgrids considering demand response program," Energy, Elsevier, vol. 141(C), pages 1059-1071.
    16. Arul, R. & Velusami, S. & Ravi, G., 2015. "A new algorithm for combined dynamic economic emission dispatch with security constraints," Energy, Elsevier, vol. 79(C), pages 496-511.
    17. Shaheen, Abdullah M. & El-Sehiemy, Ragab A. & Elattar, Ehab & Ginidi, Ahmed R., 2022. "An Amalgamated Heap and Jellyfish Optimizer for economic dispatch in Combined heat and power systems including N-1 Unit outages," Energy, Elsevier, vol. 246(C).
    18. Zou, Dexuan & Li, Steven & Wang, Gai-Ge & Li, Zongyan & Ouyang, Haibin, 2016. "An improved differential evolution algorithm for the economic load dispatch problems with or without valve-point effects," Applied Energy, Elsevier, vol. 181(C), pages 375-390.
    19. Simab, Mohsen & Javadi, Mohammad Sadegh & Nezhad, Ali Esmaeel, 2018. "Multi-objective programming of pumped-hydro-thermal scheduling problem using normal boundary intersection and VIKOR," Energy, Elsevier, vol. 143(C), pages 854-866.
    20. Zheng, J.H. & Chen, J.J. & Wu, Q.H. & Jing, Z.X., 2015. "Reliability constrained unit commitment with combined hydro and thermal generation embedded using self-learning group search optimizer," Energy, Elsevier, vol. 81(C), pages 245-254.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:107:y:2017:i:c:p:550-566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.