IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9450-d1002468.html
   My bibliography  Save this article

Emerging Lignin-Based Materials in Electrochemical Energy Systems

Author

Listed:
  • Yanjie Yi

    (State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China)

  • Jingshun Zhuang

    (State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China)

  • Chao Liu

    (State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
    International Innovation Center for Forest Chemicals and Materials, and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China)

  • Lirong Lei

    (State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China)

  • Shuaiming He

    (State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China)

  • Yi Hou

    (State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China)

Abstract

Lignin is a promising material due to its excellent properties. It is commonly used in electrochemical energy systems (including electrolytes, electrodes, diaphragms, and binders) due to its low price, sustainability and rich functional groups. However, lignin’s applications in energy storage systems have not been systematically reviewed in the current research. In this article, recent advances in the preparation and design of lignin-derived energy storage materials were reviewed. Starting with a brief overview of the basic chemistry of lignin and the separation process, progress in the preparation of lignin-based materials for lithium-ion batteries, supercapacitors, fuel cells, and solar cells were described, respectively. This review provides the basis for the application of lignin in the field of electrochemical energy systems. Also, the current bottleneck problems and perspectives of lignin-derived materials in improved energy storage device performance were presented for future developments.

Suggested Citation

  • Yanjie Yi & Jingshun Zhuang & Chao Liu & Lirong Lei & Shuaiming He & Yi Hou, 2022. "Emerging Lignin-Based Materials in Electrochemical Energy Systems," Energies, MDPI, vol. 15(24), pages 1-22, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9450-:d:1002468
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9450/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9450/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Choi, June-Ho & Jang, Soo-Kyeong & Kim, Jong-Hwa & Park, Se-Yeong & Kim, Jong-Chan & Jeong, Hanseob & Kim, Ho-Yong & Choi, In-Gyu, 2019. "Simultaneous production of glucose, furfural, and ethanol organosolv lignin for total utilization of high recalcitrant biomass by organosolv pretreatment," Renewable Energy, Elsevier, vol. 130(C), pages 952-960.
    2. J.-M. Tarascon & M. Armand, 2001. "Issues and challenges facing rechargeable lithium batteries," Nature, Nature, vol. 414(6861), pages 359-367, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. So-Yeon Jeong & Jae-Won Lee, 2021. "Effects of Sugars and Degradation Products Derived from Lignocellulosic Biomass on Maleic Acid Production," Energies, MDPI, vol. 14(4), pages 1-11, February.
    2. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Chao Wang & Ming Liu & Michel Thijs & Frans G. B. Ooms & Swapna Ganapathy & Marnix Wagemaker, 2021. "High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Liao, Xiaolin & Sun, Peiyi & Xu, Mengqing & Xing, Lidan & Liao, Youhao & Zhang, Liping & Yu, Le & Fan, Weizhen & Li, Weishan, 2016. "Application of tris(trimethylsilyl)borate to suppress self-discharge of layered nickel cobalt manganese oxide for high energy battery," Applied Energy, Elsevier, vol. 175(C), pages 505-511.
    5. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
    6. Guo-Rui Zhu & Qin Zhang & Qing-Song Liu & Qi-Yao Bai & Yi-Zhou Quan & You Gao & Gang Wu & Yu-Zhong Wang, 2023. "Non-flammable solvent-free liquid polymer electrolyte for lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Navaratnarajah Kuganathan & Alexander Chroneos, 2020. "Lithium Storage in Nanoporous Complex Oxide 12CaO•7Al 2 O 3 (C12A7)," Energies, MDPI, vol. 13(7), pages 1-10, March.
    8. Zhi Chang & Huijun Yang & Anqiang Pan & Ping He & Haoshen Zhou, 2022. "An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Zhu, Xiaoqing & Wang, Zhenpo & Wang, Yituo & Wang, Hsin & Wang, Cong & Tong, Lei & Yi, Mi, 2019. "Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: Thermal runaway features and safety management method," Energy, Elsevier, vol. 169(C), pages 868-880.
    10. Wang, Wei & Wu, Yufeng, 2017. "An overview of recycling and treatment of spent LiFePO4 batteries in China," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 233-243.
    11. Xiaozhe Zhang & Pan Xu & Jianing Duan & Xiaodong Lin & Juanjuan Sun & Wenjie Shi & Hewei Xu & Wenjie Dou & Qingyi Zheng & Ruming Yuan & Jiande Wang & Yan Zhang & Shanshan Yu & Zehan Chen & Mingsen Zhe, 2024. "A dicarbonate solvent electrolyte for high performance 5 V-Class Lithium-based batteries," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    12. Pinelopi Angelopoulou & Spyros Kassavetis & Joan Papavasiliou & Dimitris Karfaridis & Grzegorz Słowik & Panos Patsalas & George Avgouropoulos, 2021. "Enhanced Performance of LiAl 0.1 Mn 1.9 O 4 Cathode for Li-Ion Battery via TiN Coating," Energies, MDPI, vol. 14(4), pages 1-14, February.
    13. Xinxin Wang & Jingjing Chen & Dajian Wang & Zhiyong Mao, 2021. "Improving the alkali metal electrode/inorganic solid electrolyte contact via room-temperature ultrasound solid welding," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    14. Dong Hou & Zhengrui Xu & Zhijie Yang & Chunguang Kuai & Zhijia Du & Cheng-Jun Sun & Yang Ren & Jue Liu & Xianghui Xiao & Feng Lin, 2022. "Effect of the grain arrangements on the thermal stability of polycrystalline nickel-rich lithium-based battery cathodes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. He, Lihua & Xu, Shengming & Zhao, Zhongwei, 2017. "Suppressing the formation of Fe2P: Thermodynamic study on the phase diagram and phase transformation for LiFePO4 synthesis," Energy, Elsevier, vol. 134(C), pages 962-967.
    16. Qingyuan Li & De Ning & Deniz Wong & Ke An & Yuxin Tang & Dong Zhou & Götz Schuck & Zhenhua Chen & Nian Zhang & Xiangfeng Liu, 2022. "Improving the oxygen redox reversibility of Li-rich battery cathode materials via Coulombic repulsive interactions strategy," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Rajamani, Arunkumar & Panneerselvam, Thamayanthi & Murugan, Ramaswamy & Ramaswamy, Arun Prasath, 2023. "Electrospun derived polymer-garnet composite quasi solid state electrolyte with low interface resistance for lithium metal batteries," Energy, Elsevier, vol. 263(PE).
    18. Shriram S. Rangarajan & Suvetha Poyyamani Sunddararaj & AVV Sudhakar & Chandan Kumar Shiva & Umashankar Subramaniam & E. Randolph Collins & Tomonobu Senjyu, 2022. "Lithium-Ion Batteries—The Crux of Electric Vehicles with Opportunities and Challenges," Clean Technol., MDPI, vol. 4(4), pages 1-23, September.
    19. Philip, Abin & Ruban Kumar, A., 2023. "Recent advancements and developments employing 2D-materials in enhancing the performance of electrochemical supercapacitors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    20. Pan, Minqiang & Lai, Wenlin, 2017. "Cutting copper fiber/paraffin composite phase change material discharging experimental study based on heat dissipation capability of Li-ion battery," Renewable Energy, Elsevier, vol. 114(PB), pages 408-422.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9450-:d:1002468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.