IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v59y2016icp292-308.html
   My bibliography  Save this article

Quantifying environmental performance of biomass energy

Author

Listed:
  • Joselin Herbert, G.M.
  • Unni Krishnan, A.

Abstract

The world needs an enormous amount of energy to maintain the future economic developments. India has facile ways to overcome the immediate demand on energy supply by renewable energy resources. It has a huge potential of biomass resources to reduce the dependence on fossil fuels and to produce electrical and heat energy. The biomass energy can contributes to social and economic development. It has been identified as an alternative for the future energy demand in India. As part of furthering the development of biomass technology, it is essential to understand the environmental merits and demerits of biomass. It also aims to increase the use of biomass energy for domestic purposes. The interest behind the review is boosted by the rapid development of biomass conversion techniques and continual increase of biomass energy generation. It has motivated the authors to collect the quintessential literature of environmental aspects of biomass energy. The objective of the research work is to quantify and focuses the environmental performance of biomass energy. It also deals with the environment monitoring and control, pricing, standard and regulations of the bio-energy for the future development.

Suggested Citation

  • Joselin Herbert, G.M. & Unni Krishnan, A., 2016. "Quantifying environmental performance of biomass energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 292-308.
  • Handle: RePEc:eee:rensus:v:59:y:2016:i:c:p:292-308
    DOI: 10.1016/j.rser.2015.12.254
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115016378
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.12.254?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Suiran & Tao, Jing, 2009. "Economic, energy and environmental evaluations of biomass-based fuel ethanol projects based on life cycle assessment and simulation," Applied Energy, Elsevier, vol. 86(Supplemen), pages 178-188, November.
    2. Srirangan, Kajan & Akawi, Lamees & Moo-Young, Murray & Chou, C. Perry, 2012. "Towards sustainable production of clean energy carriers from biomass resources," Applied Energy, Elsevier, vol. 100(C), pages 172-186.
    3. González-García, Sara & Gasol, Carles M. & Gabarrell, Xavier & Rieradevall, Joan & Moreira, Ma Teresa & Feijoo, Gumersindo, 2010. "Environmental profile of ethanol from poplar biomass as transport fuel in Southern Europe," Renewable Energy, Elsevier, vol. 35(5), pages 1014-1023.
    4. Chynoweth, David P & Owens, John M & Legrand, Robert, 2001. "Renewable methane from anaerobic digestion of biomass," Renewable Energy, Elsevier, vol. 22(1), pages 1-8.
    5. Yazan, Devrim Murat & Claudio Garavelli, A. & Messeni Petruzzelli, Antonio & Albino, Vito, 2011. "The effect of spatial variables on the economic and environmental performance of bioenergy production chains," International Journal of Production Economics, Elsevier, vol. 131(1), pages 224-233, May.
    6. Kuhad, Ramesh Chander & Deswal, Deepa & Sharma, Sonia & Bhattacharya, Abhishek & Jain, Kavish Kumar & Kaur, Amandeep & Pletschke, Brett I. & Singh, Ajay & Karp, Matti, 2016. "Revisiting cellulase production and redefining current strategies based on major challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 249-272.
    7. Piwowar, Arkadiusz & Dzikuć, Maciej, 2016. "Outline of the economic and technical problems associated with the co-combustion of biomass in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 415-420.
    8. Kong, Lingjun & Tian, ShuangHong & He, Chun & Du, Changming & Tu, YuTing & Xiong, Ya, 2012. "Effect of waste wrapping paper fiber as a “solid bridge” on physical characteristics of biomass pellets made from wood sawdust," Applied Energy, Elsevier, vol. 98(C), pages 33-39.
    9. Nguyen, Thu Lan T. & Hermansen, John E. & Mogensen, Lisbeth, 2013. "Environmental performance of crop residues as an energy source for electricity production: The case of wheat straw in Denmark," Applied Energy, Elsevier, vol. 104(C), pages 633-641.
    10. Bilgili, Faik & Ozturk, Ilhan, 2015. "Biomass energy and economic growth nexus in G7 countries: Evidence from dynamic panel data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 132-138.
    11. Haberl, Helmut & Kastner, Thomas & Schaffartzik, Anke & Ludwiczek, Nikolaus & Erb, Karl-Heinz, 2012. "Global effects of national biomass production and consumption: Austria's embodied HANPP related to agricultural biomass in the year 2000," Ecological Economics, Elsevier, vol. 84(C), pages 66-73.
    12. Iddrisu, Insah & Bhattacharyya, Subhes C., 2015. "Ghana׳s bioenergy policy: Is 20% biofuel integration achievable by 2030?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 32-39.
    13. Galdos, Marcelo & Cavalett, Otávio & Seabra, Joaquim E.A. & Nogueira, Luiz Augusto Horta & Bonomi, Antonio, 2013. "Trends in global warming and human health impacts related to Brazilian sugarcane ethanol production considering black carbon emissions," Applied Energy, Elsevier, vol. 104(C), pages 576-582.
    14. Kezhen Qian & Ajay Kumar & Krushna Patil & Danielle Bellmer & Donghai Wang & Wenqiao Yuan & Raymond L. Huhnke, 2013. "Effects of Biomass Feedstocks and Gasification Conditions on the Physiochemical Properties of Char," Energies, MDPI, vol. 6(8), pages 1-15, August.
    15. Dodoo, Ambrose & Gustavsson, Leif, 2013. "Life cycle primary energy use and carbon footprint of wood-frame conventional and passive houses with biomass-based energy supply," Applied Energy, Elsevier, vol. 112(C), pages 834-842.
    16. Sadhukhan, Jhuma & Lloyd, Jon R. & Scott, Keith & Premier, Giuliano C. & Yu, Eileen H. & Curtis, Tom & Head, Ian M., 2016. "A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 116-132.
    17. Shamshirband, Shahaboddin & Khoshnevisan, Benyamin & Yousefi, Marziye & Bolandnazar, Elham & Anuar, Nor Badrul & Abdul Wahab, Ainuddin Wahid & Khan, Saif Ur Rehman, 2015. "A multi-objective evolutionary algorithm for energy management of agricultural systems—A case study in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 457-465.
    18. Van Dael, Miet & Van Passel, Steven & Pelkmans, Luc & Guisson, Ruben & Reumermann, Patrick & Luzardo, Nathalie Marquez & Witters, Nele & Broeze, Jan, 2013. "A techno-economic evaluation of a biomass energy conversion park," Applied Energy, Elsevier, vol. 104(C), pages 611-622.
    19. Omer, Abdeen Mustafa, 2008. "Green energies and the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1789-1821, September.
    20. Kumar, Anil & Kumar, Nitin & Baredar, Prashant & Shukla, Ashish, 2015. "A review on biomass energy resources, potential, conversion and policy in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 530-539.
    21. McIlveen-Wright, David R. & Huang, Ye & Rezvani, Sina & Redpath, David & Anderson, Mark & Dave, Ashok & Hewitt, Neil J., 2013. "A technical and economic analysis of three large scale biomass combustion plants in the UK," Applied Energy, Elsevier, vol. 112(C), pages 396-404.
    22. Forsell, Nicklas & Guerassimoff, Gilles & Athanassiadis, Dimitris & Thivolle-Casat, Alain & Lorne, Daphné & Millet, Guy & Assoumou, Edi, 2013. "Sub-national TIMES model for analyzing future regional use of biomass and biofuels in Sweden and France," Renewable Energy, Elsevier, vol. 60(C), pages 415-426.
    23. Chanakya, H.N. & Reddy, B.V.V. & Modak, Jayant, 2009. "Biomethanation of herbaceous biomass residues using 3-zone plug flow like digesters – A case study from India," Renewable Energy, Elsevier, vol. 34(2), pages 416-420.
    24. Diogo, V. & van der Hilst, F. & van Eijck, J. & Verstegen, J.A. & Hilbert, J. & Carballo, S. & Volante, J. & Faaij, A., 2014. "Combining empirical and theory-based land-use modelling approaches to assess economic potential of biofuel production avoiding iLUC: Argentina as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 208-224.
    25. Uwe Remme & Nathalie Trudeau & Dagmar Graczyk & Peter Taylor, 2011. "Technology Development Prospects for the Indian Power Sector," IEA Energy Papers 2011/4, OECD Publishing.
    26. Arthur, Richard & Baidoo, Martina Francisca & Antwi, Edward, 2011. "Biogas as a potential renewable energy source: A Ghanaian case study," Renewable Energy, Elsevier, vol. 36(5), pages 1510-1516.
    27. Carneiro, Patrícia & Ferreira, Paula, 2012. "The economic, environmental and strategic value of biomass," Renewable Energy, Elsevier, vol. 44(C), pages 17-22.
    28. Tonini, Davide & Astrup, Thomas, 2012. "LCA of biomass-based energy systems: A case study for Denmark," Applied Energy, Elsevier, vol. 99(C), pages 234-246.
    29. Witzel, Carl-Philipp & Finger, Robert, 2016. "Economic evaluation of Miscanthus production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 681-696.
    30. Martin, Michael & Svensson, Niclas & Fonseca, Jorge & Eklund, Mats, 2014. "Quantifying the environmental performance of integrated bioethanol and biogas production," Renewable Energy, Elsevier, vol. 61(C), pages 109-116.
    31. Yazan, Devrim Murat & Garavelli, A. Claudio & Petruzzelli, Antonio Messeni & Albino, Vito, 2011. "Corrigendum to "The effect of spatial variables on the economic and environmental performance of bioenergy production chains" [Int. J. Prod. Econ. 131 (2011) 224-233]," International Journal of Production Economics, Elsevier, vol. 132(2), pages 328-328, August.
    32. Chandel, S.S. & Shrivastva, Rajnish & Sharma, Vikrant & Ramasamy, P., 2016. "Overview of the initiatives in renewable energy sector under the national action plan on climate change in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 866-873.
    33. Liang, Zengying & Ma, Xiaoqian & Lin, Hai & Tang, Yuting, 2011. "The energy consumption and environmental impacts of SCR technology in China," Applied Energy, Elsevier, vol. 88(4), pages 1120-1129, April.
    34. Kosinkova, Jana & Doshi, Amar & Maire, Juliette & Ristovski, Zoran & Brown, Richard & Rainey, Thomas J., 2015. "Measuring the regional availability of biomass for biofuels and the potential for microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1271-1285.
    35. Anselmo Filho, Pedro & Badr, Ossama, 2004. "Biomass resources for energy in North-Eastern Brazil," Applied Energy, Elsevier, vol. 77(1), pages 51-67, January.
    36. González-García, Sara & Iribarren, Diego & Susmozas, Ana & Dufour, Javier & Murphy, Richard J., 2012. "Life cycle assessment of two alternative bioenergy systems involving Salix spp. biomass: Bioethanol production and power generation," Applied Energy, Elsevier, vol. 95(C), pages 111-122.
    37. Bilgen, Selçuk & Keleş, Sedat & Sarıkaya, İkbal & Kaygusuz, Kamil, 2015. "A perspective for potential and technology of bioenergy in Turkey: Present case and future view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 228-239.
    38. Abbasi, S. A. & Abbasi, Naseema, 2000. "The likely adverse environmental impacts of renewable energy sources," Applied Energy, Elsevier, vol. 65(1-4), pages 121-144, April.
    39. Vamvuka, D., 2009. "Comparative fixed/fluidized bed experiments for the thermal behaviour and environmental impact of olive kernel ash," Renewable Energy, Elsevier, vol. 34(1), pages 158-164.
    40. Chen, Wei-Hsin & Cheng, Wen-Yi & Lu, Ke-Miao & Huang, Ying-Pin, 2011. "An evaluation on improvement of pulverized biomass property for solid fuel through torrefaction," Applied Energy, Elsevier, vol. 88(11), pages 3636-3644.
    41. Vijay, V.K. & Prasad, R. & Singh, J.P. & Sorayan, V.P.S., 1996. "A case for biogas energy application for rural industries in India," Renewable Energy, Elsevier, vol. 9(1), pages 993-996.
    42. Claire Granier & Bertrand Bessagnet & Tami Bond & Ariela D’Angiola & Hugo Denier van der Gon & Gregory Frost & Angelika Heil & Johannes Kaiser & Stefan Kinne & Zbigniew Klimont & Silvia Kloster & Jean, 2011. "Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period," Climatic Change, Springer, vol. 109(1), pages 163-190, November.
    43. Salil Arora & Anant Vyas & Larry R. Johnson, 2011. "Projections of highway vehicle population, energy demand, and CO 2 emissions in India to 2040," Natural Resources Forum, Blackwell Publishing, vol. 35, pages 49-62, February.
    44. Demirbas, Ayhan, 2009. "Political, economic and environmental impacts of biofuels: A review," Applied Energy, Elsevier, vol. 86(Supplemen), pages 108-117, November.
    45. Lam, Su Shiung & Liew, Rock Keey & Jusoh, Ahmad & Chong, Cheng Tung & Ani, Farid Nasir & Chase, Howard A., 2016. "Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 741-753.
    46. Suntana, Asep S. & Vogt, Kristiina A. & Turnblom, Eric C. & Upadhye, Ravi, 2009. "Bio-methanol potential in Indonesia: Forest biomass as a source of bio-energy that reduces carbon emissions," Applied Energy, Elsevier, vol. 86(Supplemen), pages 215-221, November.
    47. Kong, Sieng-Huat & Loh, Soh-Kheang & Bachmann, Robert Thomas & Rahim, Sahibin Abdul & Salimon, Jumat, 2014. "Biochar from oil palm biomass: A review of its potential and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 729-739.
    48. Starfelt, Fredrik & Daianova, Lilia & Yan, Jinyue & Thorin, Eva & Dotzauer, Erik, 2012. "The impact of lignocellulosic ethanol yields in polygeneration with district heating – A case study," Applied Energy, Elsevier, vol. 92(C), pages 791-799.
    49. Wang, Wei-Cheng & Tao, Ling, 2016. "Bio-jet fuel conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 801-822.
    50. Heller, Martin C & Keoleian, Gregory A & Mann, Margaret K & Volk, Timothy A, 2004. "Life cycle energy and environmental benefits of generating electricity from willow biomass," Renewable Energy, Elsevier, vol. 29(7), pages 1023-1042.
    51. Chau, J. & Sowlati, T. & Sokhansanj, S. & Preto, F. & Melin, S. & Bi, X., 2009. "Techno-economic analysis of wood biomass boilers for the greenhouse industry," Applied Energy, Elsevier, vol. 86(3), pages 364-371, March.
    52. Lu, Li & Tang, Ya & Xie, Jia-sui & Yuan, Yuan-liang, 2009. "The role of marginal agricultural land-based mulberry planting in biomass energy production," Renewable Energy, Elsevier, vol. 34(7), pages 1789-1794.
    53. Mamphweli, Ntshengedzeni S. & Meyer, Edson L., 2009. "Implementation of the biomass gasification project for community empowerment at Melani village, Eastern Cape, South Africa," Renewable Energy, Elsevier, vol. 34(12), pages 2923-2927.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gan, Yong Yang & Ong, Hwai Chyuan & Ling, Tau Chuan & Chen, Wei-Hsin & Chong, Cheng Tung, 2019. "Torrefaction of de-oiled Jatropha seed kernel biomass for solid fuel production," Energy, Elsevier, vol. 170(C), pages 367-374.
    2. Mosayeb Dashtpeyma & Reza Ghodsi, 2021. "Forest Biomass and Bioenergy Supply Chain Resilience: A Systematic Literature Review on the Barriers and Enablers," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    3. Zhang, Zhikun & Liu, Lina & Shen, Boxiong & Wu, Chunfei, 2018. "Preparation, modification and development of Ni-based catalysts for catalytic reforming of tar produced from biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1086-1109.
    4. ABM Abdul Malek & M Hasanuzzaman & Nasrudin A Rahim & Yusuf A Al–Turki, 2021. "Energy, economic, and environmental analysis of 10-MW biomass gasification based power generation in Malaysia," Energy & Environment, , vol. 32(2), pages 295-337, March.
    5. Rui Zhao & Yiyun Liu & Zhenyan Zhang & Sidai Guo & Ming-Lang Tseng & Kuo-Jui Wu, 2018. "Enhancing Eco-Efficiency of Agro-Products’ Closed-Loop Supply Chain under the Belt and Road Initiatives: A System Dynamics Approach," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
    6. Manolis, E.N. & Zagas, T.D. & Karetsos, G.K. & Poravou, C.A., 2019. "Ecological restrictions in forest biomass extraction for a sustainable renewable energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 290-297.
    7. Ibrahim Mosly & Anas A. Makki, 2018. "Current Status and Willingness to Adopt Renewable Energy Technologies in Saudi Arabia," Sustainability, MDPI, vol. 10(11), pages 1-20, November.
    8. Mortari, Daniela A. & Pereira, Fernando M. & Crnkovic, Paula M., 2020. "Experimental investigation of the carbon dioxide effect on the devolatilization and combustion of a coal and sugarcane bagasse," Energy, Elsevier, vol. 204(C).
    9. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuşkaya, Sevda, 2017. "Can biomass energy be an efficient policy tool for sustainable development?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 830-845.
    10. Kang, Kang & Klinghoffer, Naomi B. & ElGhamrawy, Islam & Berruti, Franco, 2021. "Thermochemical conversion of agroforestry biomass and solid waste using decentralized and mobile systems for renewable energy and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    11. Sharma, Vinit & Getahun, Tokuma & Verma, Minal & Villa, Alberto & Gupta, Neeraj, 2020. "Carbon based catalysts for the hydrodeoxygenation of lignin and related molecules: A powerful tool for the generation of non-petroleum chemical products including hydrocarbons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    12. Lin, Boqiang & He, Jiaxin, 2017. "Is biomass power a good choice for governments in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1218-1230.
    13. Grzegorz Maj, 2018. "Emission Factors and Energy Properties of Agro and Forest Biomass in Aspect of Sustainability of Energy Sector," Energies, MDPI, vol. 11(6), pages 1-12, June.
    14. Yano, Akira & Cossu, Marco, 2019. "Energy sustainable greenhouse crop cultivation using photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 116-137.
    15. Ting Wang & Qiya Wang & Caiqing Zhang, 2021. "Research on the Optimal Operation of a Novel Renewable Multi-Energy Complementary System in Rural Areas," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    16. Mahmudul Hasan & Yousef Haseli & Ernur Karadogan, 2018. "Correlations to Predict Elemental Compositions and Heating Value of Torrefied Biomass," Energies, MDPI, vol. 11(9), pages 1-15, September.
    17. Pinto, Lígia Costa & Sousa, Sara & Valente, Marieta, 2022. "Forest bioenergy as a land and wildfire management tool: Economic valuation under different informational contexts," Energy Policy, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toka, Agorasti & Iakovou, Eleftherios & Vlachos, Dimitrios & Tsolakis, Naoum & Grigoriadou, Anastasia-Loukia, 2014. "Managing the diffusion of biomass in the residential energy sector: An illustrative real-world case study," Applied Energy, Elsevier, vol. 129(C), pages 56-69.
    2. Jean Nepomuscene Ntihuga & Thomas Senn & Peter Gschwind & Reinhard Kohlus, 2013. "Estimating Energy- and Eco-Balances for Continuous Bio-Ethanol Production Using a Blenke Cascade System," Energies, MDPI, vol. 6(4), pages 1-19, April.
    3. Van Dael, Miet & Van Passel, Steven & Pelkmans, Luc & Guisson, Ruben & Reumermann, Patrick & Luzardo, Nathalie Marquez & Witters, Nele & Broeze, Jan, 2013. "A techno-economic evaluation of a biomass energy conversion park," Applied Energy, Elsevier, vol. 104(C), pages 611-622.
    4. Alessandra Cesaro & Vincenzo Belgiorno, 2015. "Combined Biogas and Bioethanol Production: Opportunities and Challenges for Industrial Application," Energies, MDPI, vol. 8(8), pages 1-24, August.
    5. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    6. Qi, Jianhui & Zhao, Jianli & Xu, Yang & Wang, Yongjia & Han, Kuihua, 2018. "Segmented heating carbonization of biomass: Yields, property and estimation of heating value of chars," Energy, Elsevier, vol. 144(C), pages 301-311.
    7. Huang, Y. & McIlveen-Wright, D.R. & Rezvani, S. & Huang, M.J. & Wang, Y.D. & Roskilly, A.P. & Hewitt, N.J., 2013. "Comparative techno-economic analysis of biomass fuelled combined heat and power for commercial buildings," Applied Energy, Elsevier, vol. 112(C), pages 518-525.
    8. Tahereh Soleymani Angili & Katarzyna Grzesik & Anne Rödl & Martin Kaltschmitt, 2021. "Life Cycle Assessment of Bioethanol Production: A Review of Feedstock, Technology and Methodology," Energies, MDPI, vol. 14(10), pages 1-18, May.
    9. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuşkaya, Sevda, 2017. "Can biomass energy be an efficient policy tool for sustainable development?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 830-845.
    10. Muth, D.J. & Bryden, K.M. & Nelson, R.G., 2013. "Sustainable agricultural residue removal for bioenergy: A spatially comprehensive US national assessment," Applied Energy, Elsevier, vol. 102(C), pages 403-417.
    11. Kamel, Salah & El-Sattar, Hoda Abd & Vera, David & Jurado, Francisco, 2018. "Bioenergy potential from agriculture residues for energy generation in Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 28-37.
    12. Malça, João & Coelho, António & Freire, Fausto, 2014. "Environmental life-cycle assessment of rapeseed-based biodiesel: Alternative cultivation systems and locations," Applied Energy, Elsevier, vol. 114(C), pages 837-844.
    13. Francesca Nardin & Fabrizio Mazzetto, 2014. "Mapping of Biomass Fluxes: A Method for Optimizing Biogas-Refinery of Livestock Effluents," Sustainability, MDPI, vol. 6(9), pages 1-21, September.
    14. Yazan, Devrim Murat & Mandras, Giovanni & Garau, Giorgio, 2017. "Environmental and economic sustainability of integrated production in bio-refineries: The thistle case in Sardinia," Renewable Energy, Elsevier, vol. 102(PB), pages 349-360.
    15. Venturini, Giada & Pizarro-Alonso, Amalia & Münster, Marie, 2019. "How to maximise the value of residual biomass resources: The case of straw in Denmark," Applied Energy, Elsevier, vol. 250(C), pages 369-388.
    16. Wang, Changbo & Chang, Yuan & Zhang, Lixiao & Chen, Yongsheng & Pang, Mingyue, 2018. "Quantifying uncertainties in greenhouse gas accounting of biomass power generation in China: System boundary and parameters," Energy, Elsevier, vol. 158(C), pages 121-127.
    17. Xinhua Shen & Raghava R. Kommalapati & Ziaul Huque, 2015. "The Comparative Life Cycle Assessment of Power Generation from Lignocellulosic Biomass," Sustainability, MDPI, vol. 7(10), pages 1-14, September.
    18. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    19. Budzianowski, Wojciech M. & Postawa, Karol, 2016. "Total Chain Integration of sustainable biorefinery systems," Applied Energy, Elsevier, vol. 184(C), pages 1432-1446.
    20. Aschemann-Witzel, Jessica & Stangherlin, Isadora Do Carmo, 2021. "Upcycled by-product use in agri-food systems from a consumer perspective: A review of what we know, and what is missing," Technological Forecasting and Social Change, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:59:y:2016:i:c:p:292-308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.