IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i2p416-420.html
   My bibliography  Save this article

Biomethanation of herbaceous biomass residues using 3-zone plug flow like digesters – A case study from India

Author

Listed:
  • Chanakya, H.N.
  • Reddy, B.V.V.
  • Modak, Jayant

Abstract

Biomethanation of herbaceous biomass feedstock has the potential to provide clean energy source for cooking and other activities in areas where such biomass availability predominates. A biomethanation concept that involves fermentation of biomass residues in three steps, occurring in three zones of the fermentor is described. This approach while attempting take advantage of multistage reactors simplifies the reactor operation and obviates the need for a high degree of process control or complex reactor design. Typical herbaceous biomass decompose with a rapid VFA flux initially (with a tendency to float) followed by a slower decomposition showing balanced process of VFA generation and its utilization by methanogens that colonize biomass slowly. The tendency to float at the initial stages is suppressed by allowing previous days feed to hold it below digester liquid which permits VFA to disperse into the digester liquid without causing process inhibition. This approach has been used to build and operate simple biomass digesters to provide cooking gas in rural areas with weed and agro-residues. With appropriate modifications, the same concept has been used for digesting municipal solid wastes in small towns where large fermentors are not viable. With further modifications this concept has been used for solid–liquid feed fermentors. Methanogen colonized leaf biomass has been used as biofilm support to treat coffee processing wastewater as well as crop litter alternately in a year. During summer it functions as a biomass based biogas plants operating in the three-zone mode while in winter, feeding biomass is suspended and high strength coffee processing wastewater is let into the fermentor achieving over 90% BOD reduction. The early field experience of these fermentors is presented.

Suggested Citation

  • Chanakya, H.N. & Reddy, B.V.V. & Modak, Jayant, 2009. "Biomethanation of herbaceous biomass residues using 3-zone plug flow like digesters – A case study from India," Renewable Energy, Elsevier, vol. 34(2), pages 416-420.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:2:p:416-420
    DOI: 10.1016/j.renene.2008.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148108002061
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paliwal, Aastha & Srinivas, Arpitha & Pauls, Glen & B.G, Namratha & Reddy, Rohitha & S, Dasappa & H.N., Chanakya, 2023. "Methanogen colonization and ‘end-of-life’ use of spent lignocellulose from a solid-state reactor as an inoculum source," Energy, Elsevier, vol. 278(PA).
    2. Kumar, Anil & Kumar, Nitin & Baredar, Prashant & Shukla, Ashish, 2015. "A review on biomass energy resources, potential, conversion and policy in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 530-539.
    3. Thomas, Paul & Soren, Nirmala & Rumjit, Nelson Pynadathu & George James, Jake & Saravanakumar, M.P., 2017. "Biomass resources and potential of anaerobic digestion in Indian scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 718-730.
    4. Martí-Herrero, J. & Soria-Castellón, G. & Diaz-de-Basurto, A. & Alvarez, R. & Chemisana, D., 2019. "Biogas from a full scale digester operated in psychrophilic conditions and fed only with fruit and vegetable waste," Renewable Energy, Elsevier, vol. 133(C), pages 676-684.
    5. Singh, Jasvinder & Gu, Sai, 2010. "Biomass conversion to energy in India--A critique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1367-1378, June.
    6. Harshita Negi & Deep Chandra Suyal & Ravindra Soni & Krishna Giri & Reeta Goel, 2023. "Indian Scenario of Biomass Availability and Its Bioenergy-Conversion Potential," Energies, MDPI, vol. 16(15), pages 1-17, August.
    7. Joselin Herbert, G.M. & Unni Krishnan, A., 2016. "Quantifying environmental performance of biomass energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 292-308.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:2:p:416-420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.