IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v102y2017ipbp349-360.html
   My bibliography  Save this article

Environmental and economic sustainability of integrated production in bio-refineries: The thistle case in Sardinia

Author

Listed:
  • Yazan, Devrim Murat
  • Mandras, Giovanni
  • Garau, Giorgio

Abstract

This paper aims at evaluating the environmental and economic sustainability of bio-refineries that produce multiple products through their supply chains (SCs). A physical enterprise input-output (EIO) model is used to quantify the material/energy/waste flows and integrated to the monetary EIO model to compute the economic performance of bio-refinery SC (BRSC). The empirical case study is based on a (under-construction) bio-refinery which uses thistle oil and residues to produce bio-monomers, bio-lubricants, glycerine, and thermal energy in Porto Torres industrial district, Sardinia (Italy). Given the impact of uncertainty on the performance of the BRSC, we apply sensitivity analysis on the spatial, logistical, and biomass quality variables, i.e., land productivity, transportation distance, and thistle oil content rate.

Suggested Citation

  • Yazan, Devrim Murat & Mandras, Giovanni & Garau, Giorgio, 2017. "Environmental and economic sustainability of integrated production in bio-refineries: The thistle case in Sardinia," Renewable Energy, Elsevier, vol. 102(PB), pages 349-360.
  • Handle: RePEc:eee:renene:v:102:y:2017:i:pb:p:349-360
    DOI: 10.1016/j.renene.2016.10.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811630920X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramírez, Francisco & Seco, Andrés, 2011. "Minimizing the environmental effects caused by the production of bioenergy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3327-3331, September.
    2. Sharma, B. & Ingalls, R.G. & Jones, C.L. & Khanchi, A., 2013. "Biomass supply chain design and analysis: Basis, overview, modeling, challenges, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 608-627.
    3. Isahak, Wan Nor Roslam Wan & Hisham, Mohamed W.M. & Yarmo, Mohd Ambar & Yun Hin, Taufiq-yap, 2012. "A review on bio-oil production from biomass by using pyrolysis method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5910-5923.
    4. Yazan, Devrim Murat & Claudio Garavelli, A. & Messeni Petruzzelli, Antonio & Albino, Vito, 2011. "The effect of spatial variables on the economic and environmental performance of bioenergy production chains," International Journal of Production Economics, Elsevier, vol. 131(1), pages 224-233, May.
    5. Wiedmann, Thomas & Minx, Jan & Barrett, John & Wackernagel, Mathis, 2006. "Allocating ecological footprints to final consumption categories with input-output analysis," Ecological Economics, Elsevier, vol. 56(1), pages 28-48, January.
    6. Awudu, Iddrisu & Zhang, Jun, 2012. "Uncertainties and sustainability concepts in biofuel supply chain management: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1359-1368.
    7. Wiedmann, Thomas & Lenzen, Manfred & Turner, Karen & Barrett, John, 2007. "Examining the global environmental impact of regional consumption activities -- Part 2: Review of input-output models for the assessment of environmental impacts embodied in trade," Ecological Economics, Elsevier, vol. 61(1), pages 15-26, February.
    8. Kuhtz, Silvana & Zhou, Chaoying & Albino, Vito & Yazan, Devrim M., 2010. "Energy use in two Italian and Chinese tile manufacturers: A comparison using an enterprise input–output model," Energy, Elsevier, vol. 35(1), pages 364-374.
    9. Giandemetrio Marangoni & Giulio Fezzi, 2002. "Input-Output for Management Control: The Case of GlaxoSmithKline," Economic Systems Research, Taylor & Francis Journals, vol. 14(3), pages 245-256.
    10. Vito Albino & Erik Dietzenbacher & Silvana Kuhtz, 2003. "Analysing Materials and Energy Flows in an Industrial District using an Enterprise Input-Output Model," Economic Systems Research, Taylor & Francis Journals, vol. 15(4), pages 457-480.
    11. Louise Staffas & Mathias Gustavsson & Kes McCormick, 2013. "Strategies and Policies for the Bioeconomy and Bio-Based Economy: An Analysis of Official National Approaches," Sustainability, MDPI, Open Access Journal, vol. 5(6), pages 1-19, June.
    12. De Meyer, Annelies & Cattrysse, Dirk & Rasinmäki, Jussi & Van Orshoven, Jos, 2014. "Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 657-670.
    13. Gerssen-Gondelach, S.J. & Saygin, D. & Wicke, B. & Patel, M.K. & Faaij, A.P.C., 2014. "Competing uses of biomass: Assessment and comparison of the performance of bio-based heat, power, fuels and materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 964-998.
    14. Parajuli, Ranjan & Dalgaard, Tommy & Jørgensen, Uffe & Adamsen, Anders Peter S. & Knudsen, Marie Trydeman & Birkved, Morten & Gylling, Morten & Schjørring, Jan Kofod, 2015. "Biorefining in the prevailing energy and materials crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 244-263.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang K. Seung & Do-Hoon Kim, 2020. "Examining Supply Chain for Seafood Industries Using Structural Path Analysis," Sustainability, MDPI, Open Access Journal, vol. 12(5), pages 1-20, March.
    2. Paladino, O. & Neviani, M., 2018. "A closed loop biowaste to biofuel integrated process fed with waste frying oil, organic waste and algal biomass: Feasibility at pilot scale," Renewable Energy, Elsevier, vol. 124(C), pages 61-74.
    3. Pulighe, Giuseppe & Bonati, Guido & Colangeli, Marco & Morese, Maria Michela & Traverso, Lorenzo & Lupia, Flavio & Khawaja, Cosette & Janssen, Rainer & Fava, Francesco, 2019. "Ongoing and emerging issues for sustainable bioenergy production on marginal lands in the Mediterranean regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 58-70.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:102:y:2017:i:pb:p:349-360. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.