IDEAS home Printed from https://ideas.repec.org/p/sur/surrec/0913.html
   My bibliography  Save this paper

Shocking Stuff: Technology, Hours, and Factor Substitution

Author

Listed:
  • Cristiano Cantore

    (University of Surrey)

  • Miguel A. Leon-Ledesma

    (University of Kent)

  • Peter McAdam

    (University of Surrey & European Central Bank)

  • Alpo Willman

    (European Central Bank)

Abstract

The response of hours to technology shocks is a key controversy in macroeconomics. We show that differences between RBC and NK models hinge on highly restrictive views of technology. We introduce CES production technologies and demonstrate that the response of hours depends on the factor-augmenting nature of shocks and the capital-labor substitution elasticity in both models. We develop analytical expressions to establish the thresholds determining its sign. This opens new margins for shock identification combining theory and VAR evidence. We discuss how our models provide new robust restrictions for empirical work, especially using the labor income share.

Suggested Citation

  • Cristiano Cantore & Miguel A. Leon-Ledesma & Peter McAdam & Alpo Willman, 2013. "Shocking Stuff: Technology, Hours, and Factor Substitution," School of Economics Discussion Papers 0913, School of Economics, University of Surrey.
  • Handle: RePEc:sur:surrec:0913
    as

    Download full text from publisher

    File URL: https://repec.som.surrey.ac.uk/2013/DP09-13.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gali, Jordi & Lopez-Salido, J. David & Valles, Javier, 2003. "Technology shocks and monetary policy: assessing the Fed's performance," Journal of Monetary Economics, Elsevier, vol. 50(4), pages 723-743, May.
    2. Sean Holly & Ivan Petrella, 2012. "Factor Demand Linkages, Technology Shocks, and the Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 948-963, November.
    3. Prescott, Edward C., 1986. "Theory ahead of business-cycle measurement," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 25(1), pages 11-44, January.
    4. Turner, Karen & Lenzen, Manfred & Wiedmann, Thomas & Barrett, John, 2007. "Examining the global environmental impact of regional consumption activities -- Part 1: A technical note on combining input-output and ecological footprint analysis," Ecological Economics, Elsevier, vol. 62(1), pages 37-44, April.
    5. Miles S. Kimball & John G. Fernald & Susanto Basu, 2006. "Are Technology Improvements Contractionary?," American Economic Review, American Economic Association, vol. 96(5), pages 1418-1448, December.
    6. Schmitt-Grohe, Stephanie & Uribe, Martin, 2007. "Optimal simple and implementable monetary and fiscal rules," Journal of Monetary Economics, Elsevier, vol. 54(6), pages 1702-1725, September.
    7. Miguel A León-Ledesma & Peter McAdam & Alpo Willman, 2012. "Non-Balanced Growth and Production Technology Estimation," Studies in Economics 1204, School of Economics, University of Kent.
    8. Miguel A. León-Ledesma & Peter McAdam & Alpo Willman, 2010. "Identifying the Elasticity of Substitution with Biased Technical Change," American Economic Review, American Economic Association, vol. 100(4), pages 1330-1357, September.
    9. Whelan, Karl T., 2009. "Technology shocks and hours worked: Checking for robust conclusions," Journal of Macroeconomics, Elsevier, vol. 31(2), pages 231-239, June.
    10. V. V. Chari & Patrick J. Kehoe & Ellen R. McGrattan, 2009. "New Keynesian Models: Not Yet Useful for Policy Analysis," American Economic Journal: Macroeconomics, American Economic Association, vol. 1(1), pages 242-266, January.
    11. Wiedmann, Thomas, 2009. "A first empirical comparison of energy Footprints embodied in trade -- MRIO versus PLUM," Ecological Economics, Elsevier, vol. 68(7), pages 1975-1990, May.
    12. Norihiko Yamano & Nadim Ahmad, 2006. "The OECD Input-Output Database: 2006 Edition," OECD Science, Technology and Industry Working Papers 2006/8, OECD Publishing.
    13. Luca Gambetti & Jordi Galí, 2009. "On the Sources of the Great Moderation," American Economic Journal: Macroeconomics, American Economic Association, vol. 1(1), pages 26-57, January.
    14. Durk S. Nijdam & Harry C. Wilting & Mark J. Goedkoop & Jacob Madsen, 2005. "Environmental Load from Dutch Private Consumption: How Much Damage Takes Place Abroad?," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 147-168, January.
    15. Manfred Lenzen & Lise-Lotte Pade & Jesper Munksgaard, 2004. "CO2 Multipliers in Multi-region Input-Output Models," Economic Systems Research, Taylor & Francis Journals, vol. 16(4), pages 391-412.
    16. Francis, Neville & Ramey, Valerie A., 2005. "Is the technology-driven real business cycle hypothesis dead? Shocks and aggregate fluctuations revisited," Journal of Monetary Economics, Elsevier, vol. 52(8), pages 1379-1399, November.
    17. Pesavento, Elena & Rossi, Barbara, 2005. "Do Technology Shocks Drive Hours Up Or Down? A Little Evidence From An Agnostic Procedure," Macroeconomic Dynamics, Cambridge University Press, vol. 9(4), pages 478-488, September.
    18. Jesús Fernández-Villaverde, 2010. "The econometrics of DSGE models," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 1(1), pages 3-49, March.
    19. Chirinko, Robert S., 2002. "Corporate Taxation, Capital Formation,and the Substitution Elasticity Between Labor and Capital," National Tax Journal, National Tax Association;National Tax Journal, vol. 55(2), pages 339-355, June.
    20. Hicks, J. R., 1969. "A Theory of Economic History," OUP Catalogue, Oxford University Press, number 9780198811633.
    21. van de Klundert, T.C.M.J. & David, P.A., 1965. "Biased Efficiency Growth and Capital-Labor Substitution in the U.S., 1899-1960Biased Efficiency Growth and Capital-Labor Substitution in the U.S., 1899-1960," Other publications TiSEM 049dd3c3-8689-4ac6-9e72-7, Tilburg University, School of Economics and Management.
    22. Oliver J. Blanchard, 1997. "The Medium Run," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 28(2), pages 89-158.
    23. Michelle Alexopoulos, 2011. "Read All about It!! What Happens Following a Technology Shock?," American Economic Review, American Economic Association, vol. 101(4), pages 1144-1179, June.
    24. Tovar, Camilo Ernesto, 2009. "DSGE Models and Central Banks," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-31.
    25. Dedola, Luca & Neri, Stefano, 2007. "What does a technology shock do? A VAR analysis with model-based sign restrictions," Journal of Monetary Economics, Elsevier, vol. 54(2), pages 512-549, March.
    26. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2003. "What Happens After a Technology Shock?," NBER Working Papers 9819, National Bureau of Economic Research, Inc.
    27. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
    28. Galí, Jordi & Rabanal, Pau, 2004. "Technology Shocks and Aggregate Fluctuations: How Well Does the RBC Model Fit Post-War US Data?," CEPR Discussion Papers 4522, C.E.P.R. Discussion Papers.
    29. Yuhn, Ky-hyang, 1991. "Economic Growth, Technical Change Biases, and the Elasticity of Substitution: A Test of the De La Grandville Hypothesis," The Review of Economics and Statistics, MIT Press, vol. 73(2), pages 340-346, May.
    30. Levine, Paul & McAdam, Peter & Pearlman, Joseph, 2008. "Quantifying and sustaining welfare gains from monetary commitment," Journal of Monetary Economics, Elsevier, vol. 55(7), pages 1253-1276, October.
    31. Julio J. Rotemberg, 2003. "Stochastic Technical Progress, Smooth Trends, and Nearly Distinct Business Cycles," American Economic Review, American Economic Association, vol. 93(5), pages 1543-1559, December.
    32. Cantore, C. & Levine, P., 2012. "Getting normalization right: Dealing with ‘dimensional constants’ in macroeconomics," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1931-1949.
    33. Chirinko, Robert S., 2008. "[sigma]: The long and short of it," Journal of Macroeconomics, Elsevier, vol. 30(2), pages 671-686, June.
    34. Acemoglu, Daron & Autor, David, 2011. "Skills, Tasks and Technologies: Implications for Employment and Earnings," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 12, pages 1043-1171, Elsevier.
    35. McAdam, Peter & Willman, Alpo, 2013. "Medium Run Redux," Macroeconomic Dynamics, Cambridge University Press, vol. 17(4), pages 695-727, June.
    36. Barbara Rossi & Elena Pesavento, 2004. "Do Technology Shocks Drive Hours Up or Down?," Econometric Society 2004 North American Summer Meetings 96, Econometric Society.
    37. Beach, Earl F, 1971. "Hicks on Ricardo on Machinery," Economic Journal, Royal Economic Society, vol. 81(324), pages 916-922, December.
    38. Charles I. Jones, 2003. "Growth, capital shares, and a new perspective on production functions," Proceedings, Federal Reserve Bank of San Francisco, issue Nov.
    39. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    40. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    41. Coenen, Günter & McAdam, Peter & Straub, Roland, 2008. "Tax reform and labour-market performance in the euro area: A simulation-based analysis using the New Area-Wide Model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(8), pages 2543-2583, August.
    42. Machado, Giovani & Schaeffer, Roberto & Worrell, Ernst, 2001. "Energy and carbon embodied in the international trade of Brazil: an input-output approach," Ecological Economics, Elsevier, vol. 39(3), pages 409-424, December.
    43. H. Uzawa, 1961. "Neutral Inventions and the Stability of Growth Equilibrium," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 28(2), pages 117-124.
    44. Neville Francis & Michael T. Owyang & Athena T. Theodorou, 2003. "The use of long-run restrictions for the identification of technology shocks," Review, Federal Reserve Bank of St. Louis, vol. 85(Nov), pages 53-66.
    45. Wiedmann, Thomas & Minx, Jan & Barrett, John & Wackernagel, Mathis, 2006. "Allocating ecological footprints to final consumption categories with input-output analysis," Ecological Economics, Elsevier, vol. 56(1), pages 28-48, January.
    46. Canova, Fabio & Paustian, Matthias, 2011. "Business cycle measurement with some theory," Journal of Monetary Economics, Elsevier, vol. 58(4), pages 345-361.
    47. Harald Uhlig, 2004. "Do Technology Shocks Lead to a Fall in Total Hours Worked?," Journal of the European Economic Association, MIT Press, vol. 2(2-3), pages 361-371, 04/05.
    48. Fabio Canova & David Lopez-Salido & Claudio Michelacci, 2010. "The effects of technology shocks on hours and output: a robustness analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(5), pages 755-773.
    49. Olivier de La Grandville & Rainer Klump, 2000. "Economic Growth and the Elasticity of Substitution: Two Theorems and Some Suggestions," American Economic Review, American Economic Association, vol. 90(1), pages 282-291, March.
    50. Wiedmann, Thomas, 2009. "A review of recent multi-region input-output models used for consumption-based emission and resource accounting," Ecological Economics, Elsevier, vol. 69(2), pages 211-222, December.
    51. Wiedmann, Thomas & Lenzen, Manfred & Turner, Karen & Barrett, John, 2007. "Examining the global environmental impact of regional consumption activities -- Part 2: Review of input-output models for the assessment of environmental impacts embodied in trade," Ecological Economics, Elsevier, vol. 61(1), pages 15-26, February.
    52. Panik, Michael J, 1976. "Factor Learning and Biased Factor-Efficiency Growth in the United States, 1929-1966," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 17(3), pages 733-739, October.
    53. Fernald, John G., 2007. "Trend breaks, long-run restrictions, and contractionary technology improvements," Journal of Monetary Economics, Elsevier, vol. 54(8), pages 2467-2485, November.
    54. Charles I. Jones, 2005. "The Shape of Production Functions and the Direction of Technical Change," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(2), pages 517-549.
    55. Rainer Klump & Peter McAdam & Alpo Willman, 2012. "The Normalized Ces Production Function: Theory And Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 26(5), pages 769-799, December.
    56. Muradian, Roldan & O'Connor, Martin & Martinez-Alier, Joan, 2002. "Embodied pollution in trade: estimating the 'environmental load displacement' of industrialised countries," Ecological Economics, Elsevier, vol. 41(1), pages 51-67, April.
    57. Atkinson, G. & Hamilton, K., 2002. "International trade and the 'ecological balance of payments'," Resources Policy, Elsevier, vol. 28(1-2), pages 27-37.
    58. Stefan Giljum, 2004. "Trade, Materials Flows, and Economic Development in the South: The Example of Chile," Journal of Industrial Ecology, Yale University, vol. 8(1‐2), pages 241-261, January.
    59. Dedola, Luca & Neri, Stefano, 2007. "What does a technology shock do? A VAR analysis with model-based sign restrictions," Journal of Monetary Economics, Elsevier, vol. 54(2), pages 512-549, March.
    60. Nadim Ahmad & Andrew Wyckoff, 2003. "Carbon Dioxide Emissions Embodied in International Trade of Goods," OECD Science, Technology and Industry Working Papers 2003/15, OECD Publishing.
    61. Glen Peters & Edgar Hertwich, 2006. "Structural analysis of international trade: Environmental impacts of Norway," Economic Systems Research, Taylor & Francis Journals, vol. 18(2), pages 155-181.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali YOUSEFI & Sadegh KHALILIAN & Mohammad Hadi HAJIAN, 2010. "The Role of Water Sector in Iranian Economy: A CGE Modeling Approach," EcoMod2010 259600173, EcoMod.
    2. Cantore, Cristiano & Ferroni, Filippo & León-Ledesma, Miguel A., 2017. "The dynamics of hours worked and technology," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 67-82.
    3. Nikolaos Charalampidis, 2020. "The U.S. Labor Income Share And Automation Shocks," Economic Inquiry, Western Economic Association International, vol. 58(1), pages 294-318, January.
    4. Cantore, Cristiano & Levine, Paul & Pearlman, Joseph & Yang, Bo, 2015. "CES technology and business cycle fluctuations," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 133-151.
    5. Rujin, Svetlana, 2024. "Labor market institutions and technology-induced labor adjustment along the extensive and intensive margins," Journal of Macroeconomics, Elsevier, vol. 79(C).
    6. Rainer Klump & Peter McAdam & Alpo Willman, 2012. "The Normalized Ces Production Function: Theory And Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 26(5), pages 769-799, December.
    7. Rujin, Svetlana, 2019. "What are the effects of technology shocks on international labor markets?," Ruhr Economic Papers 806, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    8. Cristiano Cantore & Paul Levine & Giovanni Melina, 2014. "A Fiscal Stimulus and Jobless Recovery," Scandinavian Journal of Economics, Wiley Blackwell, vol. 116(3), pages 669-701, July.
    9. Dedola, Luca & Neri, Stefano, 2007. "What does a technology shock do? A VAR analysis with model-based sign restrictions," Journal of Monetary Economics, Elsevier, vol. 54(2), pages 512-549, March.
    10. Gubler, Matthias & Hertweck, Matthias S., 2013. "Commodity price shocks and the business cycle: Structural evidence for the U.S," Journal of International Money and Finance, Elsevier, vol. 37(C), pages 324-352.
    11. Jordi Gali & Pau Rabanal, 2004. "Technology Shocks and Aggregate Fluctuations: How Well Does the RBS Model Fit Postwar U.S. Data?," NBER Working Papers 10636, National Bureau of Economic Research, Inc.
    12. Francesco Giuli & Massimiliano Tancioni, 2012. "Prince-setting, monetary policy and the contractionary effects of productivity improvements," Departmental Working Papers of Economics - University 'Roma Tre' 0161, Department of Economics - University Roma Tre.
    13. Hikaru Saijo, 2019. "Technology Shocks and Hours Revisited: Evidence from Household Data," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 31, pages 347-362, January.
    14. Riccardo DiCecio & Michael T. Owyang, 2010. "Identifying technology shocks in the frequency domain," Working Papers 2010-025, Federal Reserve Bank of St. Louis.
    15. Andrei Polbin & Sergey Drobyshevsky, 2014. "Developing a Dynamic Stochastic Model of General Equilibrium for the Russian Economy," Research Paper Series, Gaidar Institute for Economic Policy, issue 166P, pages 156-156.
    16. Wiedmann, Thomas, 2009. "A first empirical comparison of energy Footprints embodied in trade -- MRIO versus PLUM," Ecological Economics, Elsevier, vol. 68(7), pages 1975-1990, May.
    17. Cantore, C. & Ferroni, F. & León-Ledesma, M A., 2011. "Interpreting the Hours-Technology time-varying relationship," Working papers 351, Banque de France.
    18. Nikolay Gospodinov & Alex Maynard & Elena Pesavento, 2011. "Sensitivity of Impulse Responses to Small Low-Frequency Comovements: Reconciling the Evidence on the Effects of Technology Shocks," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(4), pages 455-467, October.
    19. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    20. Olivier Cardi & Romain Restout, 2023. "Why Hours Worked Decline Less after Technology Shocks?Â," Working Papers 396800288, Lancaster University Management School, Economics Department.

    More about this item

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production
    • E25 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Aggregate Factor Income Distribution

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sur:surrec:0913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ioannis Lazopoulos (email available below). General contact details of provider: https://edirc.repec.org/data/desuruk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.