IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v82y2017icp67-82.html
   My bibliography  Save this article

The dynamics of hours worked and technology

Author

Listed:
  • Cantore, Cristiano
  • Ferroni, Filippo
  • León-Ledesma, Miguel A.

Abstract

The response of hours worked to technology shocks in the postwar US economy has increased over time. We offer a structural interpretation of this important time-varying macroeconomic moment. The time varying patterns captured by a structural VAR are consistent with those obtained from a parsimonious RBC model with a less than unitary elasticity of substitution between capital and labour (σ). The observed changes in the response of hours are attributable to increases in the magnitude of the degree of capital-labour substitution. Finally, we conjecture that the observed time-variation in σ is related to changes in the skill composition of the work force and biases in technological change.

Suggested Citation

  • Cantore, Cristiano & Ferroni, Filippo & León-Ledesma, Miguel A., 2017. "The dynamics of hours worked and technology," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 67-82.
  • Handle: RePEc:eee:dyncon:v:82:y:2017:i:c:p:67-82
    DOI: 10.1016/j.jedc.2017.05.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016518891730115X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jedc.2017.05.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sean Holly & Ivan Petrella, 2012. "Factor Demand Linkages, Technology Shocks, and the Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 948-963, November.
    2. Jordi Galí & Thijs van Rens, 2021. "The Vanishing Procyclicality of Labour Productivity [Why have business cycle fluctuations become less volatile?]," The Economic Journal, Royal Economic Society, vol. 131(633), pages 302-326.
    3. Miles S. Kimball & John G. Fernald & Susanto Basu, 2006. "Are Technology Improvements Contractionary?," American Economic Review, American Economic Association, vol. 96(5), pages 1418-1448, December.
    4. Timothy Cogley & Thomas J. Sargent, 2005. "Drift and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 262-302, April.
    5. Per Krusell & Lee E. Ohanian & JosÈ-Victor RÌos-Rull & Giovanni L. Violante, 2000. "Capital-Skill Complementarity and Inequality: A Macroeconomic Analysis," Econometrica, Econometric Society, vol. 68(5), pages 1029-1054, September.
    6. Chari, V.V. & Kehoe, Patrick J. & McGrattan, Ellen R., 2008. "Are structural VARs with long-run restrictions useful in developing business cycle theory?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1337-1352, November.
    7. Jordi Galí & Pau Rabanal, 2005. "Technology Shocks and Aggregate Fluctuations: How Well Does the Real Business Cycle Model Fit Postwar US Data?," NBER Chapters, in: NBER Macroeconomics Annual 2004, Volume 19, pages 225-318, National Bureau of Economic Research, Inc.
    8. Miguel A León-Ledesma & Mathan Satchi, 2019. "Appropriate Technology and Balanced Growth," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(2), pages 807-835.
    9. Rebei, Nooman, 2014. "What (really) accounts for the fall in hours after a technology shock?," Journal of Economic Dynamics and Control, Elsevier, vol. 45(C), pages 330-352.
    10. Vasco Carvalho & Xavier Gabaix, 2013. "The Great Diversification and Its Undoing," American Economic Review, American Economic Association, vol. 103(5), pages 1697-1727, August.
    11. Christopher J. Erceg & Luca Guerrieri & Christopher Gust, 2005. "Can Long-Run Restrictions Identify Technology Shocks?," Journal of the European Economic Association, MIT Press, vol. 3(6), pages 1237-1278, December.
    12. Cristiano Cantore & Miguel León-Ledesma & Peter McAdam & Alpo Willman, 2014. "Shocking Stuff: Technology, Hours, And Factor Substitution," Journal of the European Economic Association, European Economic Association, vol. 12(1), pages 108-128, February.
    13. Lawrence F. Katz & Kevin M. Murphy, 1992. "Changes in Relative Wages, 1963–1987: Supply and Demand Factors," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(1), pages 35-78.
    14. Efrem Castelnuovo, 2012. "Estimating the Evolution of Money’s Role in the U.S. Monetary Business Cycle," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(1), pages 23-52, February.
    15. Richard Clarida & Jordi Galí & Mark Gertler, 2000. "Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 115(1), pages 147-180.
    16. Alejandro Justiniano & Giorgio E. Primiceri, 2008. "The Time-Varying Volatility of Macroeconomic Fluctuations," American Economic Review, American Economic Association, vol. 98(3), pages 604-641, June.
    17. Dedola, Luca & Neri, Stefano, 2007. "What does a technology shock do? A VAR analysis with model-based sign restrictions," Journal of Monetary Economics, Elsevier, vol. 54(2), pages 512-549, March.
    18. Quah, Danny, 1992. "The Relative Importance of Permanent and Transitory Components: Identification and Some Theoretical Bounds," Econometrica, Econometric Society, vol. 60(1), pages 107-118, January.
    19. John G. Fernald & J. Christina Wang, 2016. "Why Has the Cyclicality of Productivity Changed? What Does It Mean?," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 465-496, October.
    20. H. Uzawa, 1961. "Neutral Inventions and the Stability of Growth Equilibrium," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 28(2), pages 117-124.
    21. David H. Autor & Lawrence F. Katz & Melissa S. Kearney, 2008. "Trends in U.S. Wage Inequality: Revising the Revisionists," The Review of Economics and Statistics, MIT Press, vol. 90(2), pages 300-323, May.
    22. Patrick Fève & Alain Guay, 2010. "Identification of Technology Shocks in Structural Vars," Economic Journal, Royal Economic Society, vol. 120(549), pages 1284-1318, December.
    23. Canova, Fabio & Gambetti, Luca, 2009. "Structural changes in the US economy: Is there a role for monetary policy?," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 477-490, February.
    24. Thijs van Rens & Almut Balleer, 2007. "Cyclical Skill-Biased Technological Change," 2007 Meeting Papers 62, Society for Economic Dynamics.
    25. Alvarez-Cuadrado, Francisco & Long, Ngo & Poschke, Markus, 2017. "Capital-labor substitution, structural change and growth," Theoretical Economics, Econometric Society, vol. 12(3), September.
    26. Francisco J. Buera & Joseph P. Kaboski, 2012. "The Rise of the Service Economy," American Economic Review, American Economic Association, vol. 102(6), pages 2540-2569, October.
    27. Miguel A. León-Ledesma & Peter McAdam & Alpo Willman, 2010. "Identifying the Elasticity of Substitution with Biased Technical Change," American Economic Review, American Economic Association, vol. 100(4), pages 1330-1357, September.
    28. Alessio Moro, 2012. "The Structural Transformation Between Manufacturing and Services and the Decline in the US GDP Volatility," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(3), pages 402-415, July.
    29. Cantore, Cristiano & Levine, Paul & Pearlman, Joseph & Yang, Bo, 2015. "CES technology and business cycle fluctuations," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 133-151.
    30. Daron Acemoglu, 2002. "Technical Change, Inequality, and the Labor Market," Journal of Economic Literature, American Economic Association, vol. 40(1), pages 7-72, March.
    31. Lindé, Jesper, 2009. "The effects of permanent technology shocks on hours: Can the RBC-model fit the VAR evidence?," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 597-613, March.
    32. Harald Uhlig, 2004. "Do Technology Shocks Lead to a Fall in Total Hours Worked?," Journal of the European Economic Association, MIT Press, vol. 2(2-3), pages 361-371, 04/05.
    33. Canova, Fabio & Ferroni, Filippo, 2012. "The dynamics of US inflation: Can monetary policy explain the changes?," Journal of Econometrics, Elsevier, vol. 167(1), pages 47-60.
    34. Jonas D. M. Fisher, 2006. "The Dynamic Effects of Neutral and Investment-Specific Technology Shocks," Journal of Political Economy, University of Chicago Press, vol. 114(3), pages 413-451, June.
    35. Ana Beatriz Galvão & Liudas Giraitis & George Kapetanios & Katerina Petrova, 2015. "A Bayesian Local Likelihood Method for Modelling Parameter Time Variation in DSGE Models," Working Papers 770, Queen Mary University of London, School of Economics and Finance.
    36. Ríos-Rull, José-Víctor & Schorfheide, Frank & Fuentes-Albero, Cristina & Kryshko, Maxym & Santaeulàlia-Llopis, Raül, 2012. "Methods versus substance: Measuring the effects of technology shocks," Journal of Monetary Economics, Elsevier, vol. 59(8), pages 826-846.
    37. Luca Gambetti & Jordi Galí, 2009. "On the Sources of the Great Moderation," American Economic Journal: Macroeconomics, American Economic Association, vol. 1(1), pages 26-57, January.
    38. Yongsung Chang & Jay H. Hong, 2006. "Do Technological Improvements in the Manufacturing Sector Raise or Lower Employment?," American Economic Review, American Economic Association, vol. 96(1), pages 352-368, March.
    39. Miguel A. León-Ledesma & Peter McAdam & Alpo Willman, 2015. "Production Technology Estimates and Balanced Growth," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(1), pages 40-65, February.
    40. Robert S. Chirinko, 2008. "ó: The Long And Short Of It," CESifo Working Paper Series 2234, CESifo.
    41. Neville Francis & Valerie A. Ramey, 2009. "Measures of per Capita Hours and Their Implications for the Technology-Hours Debate," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(6), pages 1071-1097, September.
    42. Yongsung Chang & Taeyoung Doh & Frank Schorfheide, 2007. "Non-stationary Hours in a DSGE Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(6), pages 1357-1373, September.
    43. Fabio Canova & David Lopez-Salido & Claudio Michelacci, 2010. "The effects of technology shocks on hours and output: a robustness analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(5), pages 755-773.
    44. Cantore, Cristiano & Ferroni, Filippo & León-Ledesma, Miguel A., 2017. "The dynamics of hours worked and technology," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 67-82.
    45. Nucci, Francesco & Riggi, Marianna, 2013. "Performance pay and changes in U.S. labor market dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2796-2813.
    46. Fernald, John G., 2007. "Trend breaks, long-run restrictions, and contractionary technology improvements," Journal of Monetary Economics, Elsevier, vol. 54(8), pages 2467-2485, November.
    47. Francis, Neville & Ramey, Valerie A., 2005. "Is the technology-driven real business cycle hypothesis dead? Shocks and aggregate fluctuations revisited," Journal of Monetary Economics, Elsevier, vol. 52(8), pages 1379-1399, November.
    48. Pengfei Wang & Yi Wen, 2011. "Understanding the Effects of Technology Shocks," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(4), pages 705-724, October.
    49. Chris Papageorgiou & Marianne Saam, 2008. "Two‐level CES Production Technology in the Solow and Diamond Growth Models," Scandinavian Journal of Economics, Wiley Blackwell, vol. 110(1), pages 119-143, March.
    50. Miyagiwa, Kaz & Papageorgiou, Chris, 2007. "Endogenous aggregate elasticity of substitution," Journal of Economic Dynamics and Control, Elsevier, vol. 31(9), pages 2899-2919, September.
    51. Alice Albonico & Sarantis Kalyvitis & Evi Pappa, 2012. "Revisiting the “Productivity-Hours Puzzle” in the RBC Paradigm: The Role of Investment Adjustment Costs," Quaderni di Dipartimento 164, University of Pavia, Department of Economics and Quantitative Methods.
    52. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez, 2008. "How Structural Are Structural Parameters?," NBER Chapters, in: NBER Macroeconomics Annual 2007, Volume 22, pages 83-137, National Bureau of Economic Research, Inc.
    53. Michelle Alexopoulos, 2011. "Read All about It!! What Happens Following a Technology Shock?," American Economic Review, American Economic Association, vol. 101(4), pages 1144-1179, June.
    54. Rainer Klump & Peter McAdam & Alpo Willman, 2012. "The Normalized Ces Production Function: Theory And Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 26(5), pages 769-799, December.
    55. Antonio Ciccone & Giovanni Peri, 2005. "Long-Run Substitutability Between More and Less Educated Workers: Evidence from U.S. States, 1950-1990," The Review of Economics and Statistics, MIT Press, vol. 87(4), pages 652-663, November.
    56. David H. Autor & Lawrence F. Katz & Alan B. Krueger, 1998. "Computing Inequality: Have Computers Changed the Labor Market?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1169-1213.
    57. Kevin J. Stiroh, 2009. "Volatility Accounting: A Production Perspective on Increased Economic Stability," Journal of the European Economic Association, MIT Press, vol. 7(4), pages 671-696, June.
    58. repec:adr:anecst:y:2009:i:95-96:p:13 is not listed on IDEAS
    59. Sekyu Choi & José-Víctor Rios-Rull, 2009. "Understanding the Dynamics of the Labor Share: the Role of non-Competitive Factor Prices," Annals of Economics and Statistics, GENES, issue 95-96, pages 251-277.
    60. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2003. "What Happens After a Technology Shock?," NBER Working Papers 9819, National Bureau of Economic Research, Inc.
    61. Acemoglu, Daron & Autor, David, 2011. "Skills, Tasks and Technologies: Implications for Employment and Earnings," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 12, pages 1043-1171, Elsevier.
    62. Julio J. Rotemberg, 2003. "Stochastic Technical Progress, Smooth Trends, and Nearly Distinct Business Cycles," American Economic Review, American Economic Association, vol. 93(5), pages 1543-1559, December.
    63. Raffaella Giacomini & Barbara Rossi, 2016. "Model Comparisons In Unstable Environments," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 57, pages 369-392, May.
    64. Di Pace, Federico & Villa, Stefania, 2016. "Factor complementarity and labour market dynamics," European Economic Review, Elsevier, vol. 82(C), pages 70-112.
    65. Chirinko, Robert S., 2008. "[sigma]: The long and short of it," Journal of Macroeconomics, Elsevier, vol. 30(2), pages 671-686, June.
    66. Canova, Fabio, 2006. "Monetary Policy and the Evolution of the US Economy," CEPR Discussion Papers 5467, C.E.P.R. Discussion Papers.
    67. King, Robert G. & Plosser, Charles I. & Rebelo, Sergio T., 1988. "Production, growth and business cycles : I. The basic neoclassical model," Journal of Monetary Economics, Elsevier, vol. 21(2-3), pages 195-232.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cantore, C. & Ferroni, F. & León-Ledesma, M A., 2011. "Interpreting the Hours-Technology time-varying relationship," Working papers 351, Banque de France.
    2. Nikolaos Charalampidis, 2020. "The U.S. Labor Income Share And Automation Shocks," Economic Inquiry, Western Economic Association International, vol. 58(1), pages 294-318, January.
    3. Rujin, Svetlana, 2024. "Labor market institutions and technology-induced labor adjustment along the extensive and intensive margins," Journal of Macroeconomics, Elsevier, vol. 79(C).
    4. Rujin, Svetlana, 2019. "What are the effects of technology shocks on international labor markets?," Ruhr Economic Papers 806, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    5. Cristiano Cantore & Miguel León-Ledesma & Peter McAdam & Alpo Willman, 2014. "Shocking Stuff: Technology, Hours, And Factor Substitution," Journal of the European Economic Association, European Economic Association, vol. 12(1), pages 108-128, February.
    6. Ferraresi Tommaso & Roventini Andrea & Semmler Willi, 2019. "Macroeconomic Regimes, Technological Shocks and Employment Dynamics," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 239(4), pages 599-625, August.
    7. Hikaru Saijo, 2019. "Technology Shocks and Hours Revisited: Evidence from Household Data," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 31, pages 347-362, January.
    8. repec:spo:wpmain:info:hdl:2441/2beljp6noq9u6oh9p9agr8ugra is not listed on IDEAS
    9. repec:hal:spmain:info:hdl:2441/2beljp6noq9u6oh9p9agr8ugra is not listed on IDEAS
    10. Bertinelli, Luisito & Cardi, Olivier & Restout, Romain, 2022. "Labor market effects of technology shocks biased toward the traded sector," Journal of International Economics, Elsevier, vol. 138(C).
    11. Dedola, Luca & Neri, Stefano, 2007. "What does a technology shock do? A VAR analysis with model-based sign restrictions," Journal of Monetary Economics, Elsevier, vol. 54(2), pages 512-549, March.
    12. Ríos-Rull, José-Víctor & Santaeulàlia-Llopis, Raül, 2010. "Redistributive shocks and productivity shocks," Journal of Monetary Economics, Elsevier, vol. 57(8), pages 931-948, November.
    13. Ali YOUSEFI & Sadegh KHALILIAN & Mohammad Hadi HAJIAN, 2010. "The Role of Water Sector in Iranian Economy: A CGE Modeling Approach," EcoMod2010 259600173, EcoMod.
    14. Almut Balleer & Thijs van Rens, 2013. "Skill-Biased Technological Change and the Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 95(4), pages 1222-1237, October.
    15. Michael Knoblach & Fabian Stöckl, 2020. "What Determines The Elasticity Of Substitution Between Capital And Labor? A Literature Review," Journal of Economic Surveys, Wiley Blackwell, vol. 34(4), pages 847-875, September.
    16. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    17. Mitra, Aruni, 2024. "The productivity puzzle and the decline of unions," Journal of Economic Dynamics and Control, Elsevier, vol. 159(C).
    18. Gubler, Matthias & Hertweck, Matthias S., 2013. "Commodity price shocks and the business cycle: Structural evidence for the U.S," Journal of International Money and Finance, Elsevier, vol. 37(C), pages 324-352.
    19. Fabio Canova & David Lopez-Salido & Claudio Michelacci, 2010. "The effects of technology shocks on hours and output: a robustness analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(5), pages 755-773.
    20. Dongya Koh & Raül Santaeulàlia-Llopis, 2017. "Countercyclical Elasticity of Substitution," Working Papers 946, Barcelona School of Economics.
    21. Molnárová, Zuzana & Reiter, Michael, 2022. "Technology, demand, and productivity: What an industry model tells us about business cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
    22. Andrei Polbin & Sergey Drobyshevsky, 2014. "Developing a Dynamic Stochastic Model of General Equilibrium for the Russian Economy," Research Paper Series, Gaidar Institute for Economic Policy, issue 166P, pages 156-156.

    More about this item

    Keywords

    Real business cycles models; Constant elasticity of substitution production function; Hours worked; Technology shocks;
    All these keywords.

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:82:y:2017:i:c:p:67-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.