IDEAS home Printed from https://ideas.repec.org/a/the/publsh/2106.html
   My bibliography  Save this article

Capital-labor substitution, structural change and growth

Author

Listed:
  • Alvarez-Cuadrado, Francisco

    (Department of Economics, McGill University)

  • Long, Ngo

    (Department of Economics, McGill University)

  • Poschke, Markus

    (Department of Economics, McGill University)

Abstract

There is growing interest in multi-sector models that combine aggregate balanced growth, consistent with the well-known Kaldor facts, with systematic changes in the sectoral allocation of resources, consistent with the Kuznets facts. Although variations in the income elasticity of demand across goods played an important role in initial approaches, recent models stress the role of supply-side factors in this process of structural change, in particular sector-specific technical change and sectoral differences in factor proportions. We explore a general framework that features an additional supply-side mechanism and also encompasses these two known mechanisms. Our model shows that sectoral differences in the degree of capital-labor substitutability -- a new mechanism -- are a driving force for structural change. When the flexibility to combine capital and labor differs across sectors, a factor rebalancing effect is operative. It tends to make production in the more flexible sector more intensive in the input that becomes more abundant. As a result, growth rates of sectoral capital-labor ratios can differ and, if this effect dominates, shares of each factor used in a given sector can move in different directions. We identify conditions under which this occurs and analyze the dynamics of such a case. We also provide some suggestive evidence consistent with this new mechanism. A quantitative analysis suggests that this channel was an important contributor to structural change out of agriculture in the United States.

Suggested Citation

  • Alvarez-Cuadrado, Francisco & Long, Ngo & Poschke, Markus, 2017. "Capital-labor substitution, structural change and growth," Theoretical Economics, Econometric Society, vol. 12(3), September.
  • Handle: RePEc:the:publsh:2106
    as

    Download full text from publisher

    File URL: http://econtheory.org/ojs/index.php/te/article/viewFile/20171229/18847/564
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Margarida Duarte & Diego Restuccia, 2010. "The Role of the Structural Transformation in Aggregate Productivity," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(1), pages 129-173.
    2. Restuccia, Diego & Yang, Dennis Tao & Zhu, Xiaodong, 2008. "Agriculture and aggregate productivity: A quantitative cross-country analysis," Journal of Monetary Economics, Elsevier, vol. 55(2), pages 234-250, March.
    3. Alvarez-Cuadrado, Francisco & Long, Ngo & Poschke, Markus, 2017. "Capital-labor substitution, structural change and growth," Theoretical Economics, Econometric Society, vol. 12(3), September.
    4. Brent Neiman, 2014. "The Global Decline of the Labor Share," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 129(1), pages 61-103.
    5. Alvarez-Cuadrado, Francisco & Long, Ngo Van & Poschke, Markus, 2018. "Capital-labor substitution, structural change and the labor income share," Journal of Economic Dynamics and Control, Elsevier, vol. 87(C), pages 206-231.
    6. Miguel A. León-Ledesma & Peter McAdam & Alpo Willman, 2015. "Production Technology Estimates and Balanced Growth," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(1), pages 40-65, February.
    7. Takayama,Akira, 1985. "Mathematical Economics," Cambridge Books, Cambridge University Press, number 9780521314985.
    8. Timo Boppart, 2014. "Structural Change and the Kaldor Facts in a Growth Model With Relative Price Effects and Non‐Gorman Preferences," Econometrica, Econometric Society, vol. 82, pages 2167-2196, November.
    9. Ezra Oberfield & Devesh Raval, 2021. "Micro Data and Macro Technology," Econometrica, Econometric Society, vol. 89(2), pages 703-732, March.
    10. Matsuyama, Kiminori, 1992. "Agricultural productivity, comparative advantage, and economic growth," Journal of Economic Theory, Elsevier, vol. 58(2), pages 317-334, December.
    11. Miyagiwa, Kaz & Papageorgiou, Chris, 2007. "Endogenous aggregate elasticity of substitution," Journal of Economic Dynamics and Control, Elsevier, vol. 31(9), pages 2899-2919, September.
    12. Bjarne S. Jensen, 2003. "Walrasian General Equilibrium Allocations and Dynamics in Two‐Sector Growth Models," German Economic Review, Verein für Socialpolitik, vol. 4(1), pages 53-87, February.
    13. David Stafford Ball, 1966. "Factor-Intensity Reversals in International Comparison of Factor Costs and Factor Use," Journal of Political Economy, University of Chicago Press, vol. 74(1), pages 77-80.
    14. Francisco Alvarez-Cuadrado & Markus Poschke, 2011. "Structural Change Out of Agriculture: Labor Push versus Labor Pull," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(3), pages 127-158, July.
    15. Duffy, John & Papageorgiou, Chris, 2000. "A Cross-Country Empirical Investigation of the Aggregate Production Function Specification," Journal of Economic Growth, Springer, vol. 5(1), pages 87-120, March.
    16. Jaume Ventura, 1997. "Growth and Interdependence," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 112(1), pages 57-84.
    17. Behrman, Jere R, 1972. "Sectoral Elasticities of Substitution between Capital and Labor in a Developing Economy: Time Series Analysis in the Case of Postwar Chile," Econometrica, Econometric Society, vol. 40(2), pages 311-326, March.
    18. Mary O'Mahony & Marcel P. Timmer, 2009. "Output, Input and Productivity Measures at the Industry Level: The EU KLEMS Database," Economic Journal, Royal Economic Society, vol. 119(538), pages 374-403, June.
    19. Michael Elsby & Bart Hobijn & Ayseful Sahin, 2013. "The Decline of the U.S. Labor Share," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 44(2 (Fall)), pages 1-63.
    20. Foellmi, Reto & Zweimüller, Josef, 2008. "Structural change, Engel's consumption cycles and Kaldor's facts of economic growth," Journal of Monetary Economics, Elsevier, vol. 55(7), pages 1317-1328, October.
    21. Caballero, Ricardo J. & Hammour, Mohamad L., 1998. "Jobless growth: appropriability, factor substitution, and unemployment," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 48(1), pages 51-94, June.
    22. Piyabha Kongsamut & Sergio Rebelo & Danyang Xie, 2001. "Beyond Balanced Growth," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 68(4), pages 869-882.
    23. Mr. Sergio Rebelo & Ms. Piyabha Kongsamut & Danyang Xie, 2001. "Beyond Balanced Growth," IMF Working Papers 2001/085, International Monetary Fund.
    24. Wingender, Asger Moll, 2015. "Skill complementarity and the dual economy," European Economic Review, Elsevier, vol. 74(C), pages 269-285.
    25. Larson, David F. & Butzer, Rita & Mundlak, Yair & Crego, Al, 2000. "A Cross-Country Database for Sector Investment and Capital," The World Bank Economic Review, World Bank, vol. 14(2), pages 371-391, May.
    26. L. Rachel Ngai & Christopher A. Pissarides, 2007. "Structural Change in a Multisector Model of Growth," American Economic Review, American Economic Association, vol. 97(1), pages 429-443, March.
    27. Daron Acemoglu & Veronica Guerrieri, 2008. "Capital Deepening and Nonbalanced Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 116(3), pages 467-498, June.
    28. Areendam Chanda & Carl‐Johan Dalgaard, 2008. "Dual Economies and International Total Factor Productivity Differences: Channelling the Impact from Institutions, Trade, and Geography," Economica, London School of Economics and Political Science, vol. 75(300), pages 629-661, November.
    29. Ronald W. Jones, 2018. "The Structure of Simple General Equilibrium Models," World Scientific Book Chapters, in: International Trade Theory and Competitive Models Features, Values, and Criticisms, chapter 4, pages 61-84, World Scientific Publishing Co. Pte. Ltd..
    30. Olivier de La Grandville & Rainer Klump, 2000. "Economic Growth and the Elasticity of Substitution: Two Theorems and Some Suggestions," American Economic Review, American Economic Association, vol. 90(1), pages 282-291, March.
    31. Bentolila Samuel & Saint-Paul Gilles, 2003. "Explaining Movements in the Labor Share," The B.E. Journal of Macroeconomics, De Gruyter, vol. 3(1), pages 1-33, October.
    32. Rodolfo E. Manuelli & Ananth Seshadri, 2014. "Frictionless Technology Diffusion: The Case of Tractors," American Economic Review, American Economic Association, vol. 104(4), pages 1368-1391, April.
    33. John Laitner, 2000. "Structural Change and Economic Growth," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 67(3), pages 545-561.
    34. Restuccia, Diego & Yang, Dennis Tao & Zhu, Xiaodong, 2008. "Agriculture and aggregate productivity: A quantitative cross-country analysis," Journal of Monetary Economics, Elsevier, vol. 55(2), pages 234-250, March.
    35. Zuleta, Hernando & Young, Andrew T., 2013. "Labor shares in a model of induced innovation," Structural Change and Economic Dynamics, Elsevier, vol. 24(C), pages 112-122.
    36. Areendam Chanda & Carl-Johan Dalgaard, 2003. "Dual Economies and International Total Factor Productivity Differences," Macroeconomics 0305002, University Library of Munich, Germany.
    37. Berthold Herrendorf & Christopher Herrington & Ákos Valentinyi, 2015. "Sectoral Technology and Structural Transformation," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(4), pages 104-133, October.
    38. Pol Antràs & Ricardo J. Caballero, 2009. "Trade and Capital Flows: A Financial Frictions Perspective," Journal of Political Economy, University of Chicago Press, vol. 117(4), pages 701-744, August.
    39. Gollin, Douglas & Parente, Stephen L. & Rogerson, Richard, 2007. "The food problem and the evolution of international income levels," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1230-1255, May.
    40. Antràs Pol, 2004. "Is the U.S. Aggregate Production Function Cobb-Douglas? New Estimates of the Elasticity of Substitution," The B.E. Journal of Macroeconomics, De Gruyter, vol. 4(1), pages 1-36, April.
    41. Miguel A. León-Ledesma & Peter McAdam & Alpo Willman, 2010. "Identifying the Elasticity of Substitution with Biased Technical Change," American Economic Review, American Economic Association, vol. 100(4), pages 1330-1357, September.
    42. repec:hoo:wpaper:e-92-3 is not listed on IDEAS
    43. Dennis, Benjamin N. & Iscan, Talan B., 2009. "Engel versus Baumol: Accounting for structural change using two centuries of U.S. data," Explorations in Economic History, Elsevier, vol. 46(2), pages 186-202, April.
    44. Hutcheson, Thomas L, 1969. "Factor Intensity and the CES Production Function," The Review of Economics and Statistics, MIT Press, vol. 51(4), pages 468-470, November.
    45. Per Krusell & Lee E. Ohanian & JosÈ-Victor RÌos-Rull & Giovanni L. Violante, 2000. "Capital-Skill Complementarity and Inequality: A Macroeconomic Analysis," Econometrica, Econometric Society, vol. 68(5), pages 1029-1054, September.
    46. Hernando Zuleta & Andrew T. Young, 2007. "Labor's shares - aggregate and industry: accounting for both in a model of unbalanced growth with induced innovation," Documentos de Trabajo 3105, Universidad del Rosario.
    47. Balistreri, Edward J. & McDaniel, Christine A. & Wong, Eina Vivian, 2003. "An estimation of US industry-level capital-labor substitution elasticities: support for Cobb-Douglas," The North American Journal of Economics and Finance, Elsevier, vol. 14(3), pages 343-356, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alvarez-Cuadrado, Francisco & Long, Ngo Van & Poschke, Markus, 2018. "Capital-labor substitution, structural change and the labor income share," Journal of Economic Dynamics and Control, Elsevier, vol. 87(C), pages 206-231.
    2. Herrendorf, Berthold & Rogerson, Richard & Valentinyi, Ákos, 2014. "Growth and Structural Transformation," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 2, chapter 6, pages 855-941, Elsevier.
    3. Michael Knoblach & Fabian Stöckl, 2020. "What Determines The Elasticity Of Substitution Between Capital And Labor? A Literature Review," Journal of Economic Surveys, Wiley Blackwell, vol. 34(4), pages 847-875, September.
    4. Monteforte, Fabio, 2020. "Structural change, the push-pull hypothesis and the Spanish labour market," Economic Modelling, Elsevier, vol. 86(C), pages 148-169.
    5. Alonso-Carrera, Jaime & Raurich, Xavier, 2018. "Labor mobility, structural change and economic growth," Journal of Macroeconomics, Elsevier, vol. 56(C), pages 292-310.
    6. Jan Trenczek & Konstantin M. Wacker, 2023. "Accounting for cross-country output differences: A sectoral CES perspective," Working Papers 2023.09, International Network for Economic Research - INFER.
    7. Manuel García‐Santana & Josep Pijoan‐Mas & Lucciano Villacorta, 2021. "Investment Demand and Structural Change," Econometrica, Econometric Society, vol. 89(6), pages 2751-2785, November.
    8. Clemens Struck & Adnan Velic, 2017. "Automation, New Technology, and Non-Homothetic Preferences," Trinity Economics Papers tep1217, Trinity College Dublin, Department of Economics.
    9. Murat Ungor, 2017. "Productivity Growth and Labor Reallocation: Latin America versus East Asia," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 24, pages 25-42, March.
    10. Blanco, Cesar & Raurich, Xavier, 2022. "Agricultural composition and labor productivity," Journal of Development Economics, Elsevier, vol. 158(C).
    11. Gangopadhyay, Kausik & Mondal, Debasis, 2021. "Productivity, relative sectoral prices, and total factor productivity: Theory and evidence," Economic Modelling, Elsevier, vol. 100(C).
    12. Marcolino, Marcos, 2022. "Accounting for structural transformation in the U.S," Journal of Macroeconomics, Elsevier, vol. 71(C).
    13. Ju, Jiandong & Lin, Justin Yifu & Wang, Yong, 2015. "Endowment structures, industrial dynamics, and economic growth," Journal of Monetary Economics, Elsevier, vol. 76(C), pages 244-263.
    14. Berlingieri, Giuseppe, 2013. "Outsourcing and the rise in services," LSE Research Online Documents on Economics 51532, London School of Economics and Political Science, LSE Library.
    15. van Neuss, Leif, 2018. "Globalization and deindustrialization in advanced countries," Structural Change and Economic Dynamics, Elsevier, vol. 45(C), pages 49-63.
    16. Yang, Dennis Tao & Zhu, Xiaodong, 2013. "Modernization of agriculture and long-term growth," Journal of Monetary Economics, Elsevier, vol. 60(3), pages 367-382.
    17. Chen, Chaoran, 2020. "Technology adoption, capital deepening, and international productivity differences," Journal of Development Economics, Elsevier, vol. 143(C).
    18. Diego Comin & Danial Lashkari & Martí Mestieri, 2021. "Structural Change With Long‐Run Income and Price Effects," Econometrica, Econometric Society, vol. 89(1), pages 311-374, January.
    19. Gray, Elie & Grimaud, André & Le Bris, David, 2018. "The Farmer, the Blue-collar, and the Monk: Understanding economic development through saturations of demands and non-homothetic productivity gains," TSE Working Papers 18-906, Toulouse School of Economics (TSE).
    20. Jaime Alonso-Carrera & Giulia Felice & Xavier Raurich, 2018. "Inequality and Structural Change under Non-Linear Engels' Curve," UB School of Economics Working Papers 2018/374, University of Barcelona School of Economics.

    More about this item

    Keywords

    Capital-labor substitution; balanced growth; structural change;
    All these keywords.

    JEL classification:

    • O40 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - General
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models
    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:the:publsh:2106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Martin J. Osborne (email available below). General contact details of provider: http://econtheory.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.