IDEAS home Printed from https://ideas.repec.org/p/zbw/tudcep/0119.html
   My bibliography  Save this paper

What determines the elasticity of substitution between capital and labor? A literature review

Author

Listed:
  • Knoblach, Michael
  • Stöckl, Fabian

Abstract

This paper reviews the status quo of the empirical and theoretical literature on the determinants of the elasticity of substitution between capital and labor. Our focus is on the two-input constant elasticity of substitution (CES) production function. By example of the U.S., we highlight the distinctive heterogeneity in empirical estimates of σ at both the aggregate and industrial level and discuss potential methodological explanations for this variation. The main part of this survey then focuses on the determinants of σ. We first review several approaches to the microfoundation of production functions, especially the CES production function. Second, we outline the construction of an aggregate elasticity of substitution (AES) in a multi-sectoral framework and investigate its dependence on underlying sectoral elasticities. Third, we discuss the influence of the institutional framework on the determination of σ. The concluding section of this review identifies a number of potential empirical and theoretical avenues for future research. Overall, we demonstrate that the effective elasticity of substitution (EES), which is typically estimated in empirical studies, is generally not an immutable deep parameter but depends on a multitude of technological, non-technological and institutional determinants.

Suggested Citation

  • Knoblach, Michael & Stöckl, Fabian, 2019. "What determines the elasticity of substitution between capital and labor? A literature review," CEPIE Working Papers 01/19, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
  • Handle: RePEc:zbw:tudcep:0119
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/191054/1/1046220586.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hideki Nakamura, 2010. "Factor Substitution, Mechanization, And Economic Growth," The Japanese Economic Review, Japanese Economic Association, vol. 61(2), pages 266-281, June.
    2. repec:hrv:faseco:34651703 is not listed on IDEAS
    3. Weitzman, Martin L, 1970. "Soviet Postwar Economic Growth and Capital-Labor Substitution," American Economic Review, American Economic Association, vol. 60(4), pages 676-692, September.
    4. Susanto Basu & David N. Weil, 1998. "Appropriate Technology and Growth," The Quarterly Journal of Economics, Oxford University Press, vol. 113(4), pages 1025-1054.
    5. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, Oxford University Press, vol. 70(1), pages 65-94.
    6. Alvarez-Cuadrado, Francisco & Long, Ngo & Poschke, Markus, 2017. "Capital-labor substitution, structural change and growth," Theoretical Economics, Econometric Society, vol. 12(3), September.
    7. Silverberg, Gerald & Verspagen, Bart, 2007. "The size distribution of innovations revisited: An application of extreme value statistics to citation and value measures of patent significance," Journal of Econometrics, Elsevier, vol. 139(2), pages 318-339, August.
    8. Cristiano Cantore & Miguel León-Ledesma & Peter McAdam & Alpo Willman, 2014. "Shocking Stuff: Technology, Hours, And Factor Substitution," Journal of the European Economic Association, European Economic Association, vol. 12(1), pages 108-128, February.
    9. Miguel A. León-Ledesma & Peter McAdam & Alpo Willman, 2015. "Production Technology Estimates and Balanced Growth," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(1), pages 40-65, February.
    10. Robert S. Chirinko, 2008. "ó: The Long And Short Of It," CESifo Working Paper Series 2234, CESifo.
    11. Cantore, Cristiano & Ferroni, Filippo & León-Ledesma, Miguel A., 2017. "The dynamics of hours worked and technology," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 67-82.
    12. C. E. Ferguson, 1965. "Time-Series Production Functions and Technological Progress in American Manufacturing Industry," Journal of Political Economy, University of Chicago Press, vol. 73, pages 135-135.
    13. David Stern, 2011. "Elasticities of substitution and complementarity," Journal of Productivity Analysis, Springer, vol. 36(1), pages 79-89, August.
    14. Arnaud Dupuy, 2012. "A Microfoundation for Production Functions: Assignment of Heterogeneous Workers to Heterogeneous Jobs," Economica, London School of Economics and Political Science, vol. 79(315), pages 534-556, July.
    15. Daron Acemoglu & Fabrizio Zilibotti, 2001. "Productivity Differences," The Quarterly Journal of Economics, Oxford University Press, vol. 116(2), pages 563-606.
    16. Diamond, Peter & McFadden, Daniel & Rodriguez, Miguel, 1978. "Measurement of the Elasticity of Factor Substitution and Bias of Technical Change," Histoy of Economic Thought Chapters, in: Fuss, Melvyn & McFadden, Daniel (ed.),Production Economics: A Dual Approach to Theory and Applications, volume 2, chapter 5, McMaster University Archive for the History of Economic Thought.
    17. Miyagiwa, Kaz & Papageorgiou, Chris, 2007. "Endogenous aggregate elasticity of substitution," Journal of Economic Dynamics and Control, Elsevier, vol. 31(9), pages 2899-2919, September.
    18. Xavier Gabaix & Jean‐Michel Lasry & Pierre‐Louis Lions & Benjamin Moll, 2016. "The Dynamics of Inequality," Econometrica, Econometric Society, vol. 84, pages 2071-2111, November.
    19. Gene M. Grossman & Elhanan Helpman, 1991. "Quality Ladders in the Theory of Growth," Review of Economic Studies, Oxford University Press, vol. 58(1), pages 43-61.
    20. Alexis Akira Toda & Kieran Walsh, 2015. "The Double Power Law in Consumption and Implications for Testing Euler Equations," Journal of Political Economy, University of Chicago Press, vol. 123(5), pages 1177-1200.
    21. Duffy, John & Papageorgiou, Chris, 2000. "A Cross-Country Empirical Investigation of the Aggregate Production Function Specification," Journal of Economic Growth, Springer, vol. 5(1), pages 87-120, March.
    22. Aghion, Philippe & Howitt, Peter, 1992. "A Model of Growth through Creative Destruction," Econometrica, Econometric Society, vol. 60(2), pages 323-351, March.
    23. Jaume Ventura, 1997. "Growth and Interdependence," The Quarterly Journal of Economics, Oxford University Press, vol. 112(1), pages 57-84.
    24. Ofer, Gur, 1987. "Soviet Economic Growth: 1928-1985," Journal of Economic Literature, American Economic Association, vol. 25(4), pages 1767-1833, December.
    25. Azariadis, Costas, 1996. "The Economics of Poverty Traps: Part One: Complete Markets," Journal of Economic Growth, Springer, vol. 1(4), pages 449-496, December.
    26. Robert S. Chirinko & Debdulal Mallick, 2017. "The Substitution Elasticity, Factor Shares, and the Low-Frequency Panel Model," American Economic Journal: Macroeconomics, American Economic Association, vol. 9(4), pages 225-253, October.
    27. J. R. Hicks, 1936. "Distribution and Economic Progress: A Revised Version," Review of Economic Studies, Oxford University Press, vol. 4(1), pages 1-12.
    28. Growiec, Jakub & Schumacher, Ingmar, 2008. "On technical change in the elasticities of resource inputs," Resources Policy, Elsevier, vol. 33(4), pages 210-221, December.
    29. Thursby, Jerry G & Lovell, C A Knox, 1978. "An Investigation of the Kmenta Approximation to the CES Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 19(2), pages 363-377, June.
    30. Sveikauskas, Leo, 1974. "Bias in Cross-Section Estimates of the Elasticity of Substitution," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 15(2), pages 522-528, June.
    31. Norbert Berthold & Rainer Fehn & Eric Thode, 2002. "Falling Labor Share and Rising Unemployment: Long–Run Consequences of Institutional Shocks?," German Economic Review, Verein für Socialpolitik, vol. 3(4), pages 431-459, November.
    32. Morawetz, David, 1976. "Elasticities of substitution in industry: What do we learn from econometric estimates?," World Development, Elsevier, vol. 4(1), pages 11-15, January.
    33. Berndt, Ernst R, 1976. "Reconciling Alternative Estimates of the Elasticity of Substitution," The Review of Economics and Statistics, MIT Press, vol. 58(1), pages 59-68, February.
    34. R. F. Kahn, 1933. "III.—The Elasticity of Substitution and the Relative Share of a Factor," Review of Economic Studies, Oxford University Press, vol. 1(1), pages 72-78.
    35. Daron Acemoglu, 2002. "Directed Technical Change," Review of Economic Studies, Oxford University Press, vol. 69(4), pages 781-809.
    36. Young, Andrew T., 2013. "U.S. Elasticities Of Substitution And Factor Augmentation At The Industry Level," Macroeconomic Dynamics, Cambridge University Press, vol. 17(4), pages 861-897, June.
    37. Sue Wing, Ian, 2006. "Representing induced technological change in models for climate policy analysis," Energy Economics, Elsevier, vol. 28(5-6), pages 539-562, November.
    38. Kenneth G. Stewart & Jiang Li, 2018. "Are factor biases and substitution identifiable? The Canadian evidence," Canadian Journal of Economics, Canadian Economics Association, vol. 51(2), pages 528-548, May.
    39. Ronald W. Jones, 1965. "The Structure of Simple General Equilibrium Models," Journal of Political Economy, University of Chicago Press, vol. 73, pages 557-557.
    40. Olivier de La Grandville & Rainer Klump, 2000. "Economic Growth and the Elasticity of Substitution: Two Theorems and Some Suggestions," American Economic Review, American Economic Association, vol. 90(1), pages 282-291, March.
    41. Mario García Molina, 2005. "Capital theory and the origins of the elasticity of substitution (1932--35)," Cambridge Journal of Economics, Oxford University Press, vol. 29(3), pages 423-437, May.
    42. Growiec, Jakub, 2008. "Production functions and distributions of unit factor productivities: Uncovering the link," Economics Letters, Elsevier, vol. 101(1), pages 87-90, October.
    43. Charles I. Jones, 2005. "The Shape of Production Functions and the Direction of Technical Change," The Quarterly Journal of Economics, Oxford University Press, vol. 120(2), pages 517-549.
    44. Rainer Klump & Peter McAdam & Alpo Willman, 2012. "The Normalized Ces Production Function: Theory And Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 26(5), pages 769-799, December.
    45. Freeman, Richard B & Medoff, James L, 1982. "Substitution between Production Labor and Other Inputs in Unionized and Nonunionized Manufacturing," The Review of Economics and Statistics, MIT Press, vol. 64(2), pages 220-233, May.
    46. Turnovsky, Stephen J., 2008. "The role of factor substitution in the theory of economic growth and income distribution: Two examples," Journal of Macroeconomics, Elsevier, vol. 30(2), pages 604-629, June.
    47. Jakub Growiec, 2008. "A new class of production functions and an argument against purely labor‐augmenting technical change," International Journal of Economic Theory, The International Society for Economic Theory, vol. 4(4), pages 483-502, December.
    48. Growiec, Jakub, 2013. "A microfoundation for normalized CES production functions with factor-augmenting technical change," Journal of Economic Dynamics and Control, Elsevier, vol. 37(11), pages 2336-2350.
    49. Irmen, Andreas, 2008. "Comment on "On the openness to trade as a determinant of the macroeconomic elasticity of substitution"," Journal of Macroeconomics, Elsevier, vol. 30(2), pages 703-706, June.
    50. Daron Acemoglu, 2003. "Labor- And Capital-Augmenting Technical Change," Journal of the European Economic Association, MIT Press, vol. 1(1), pages 1-37, March.
    51. Kalt, Joseph P, 1978. "Technological Change and Factor Substitution in the United States: 1929-1967," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 19(3), pages 761-775, October.
    52. Francesco Caselli & Wilbur John Coleman II, 2006. "The World Technology Frontier," American Economic Review, American Economic Association, vol. 96(3), pages 499-522, June.
    53. Peter McAdam, 2016. "de La Grandville, Olivier: Economic growth: a unified approach," Journal of Economics, Springer, vol. 119(1), pages 91-96, September.
    54. Walter S. McManus, 1988. "Aggregation and “The†Elasticity of Substitution," The American Economist, Sage Publications, vol. 32(2), pages 41-44, October.
    55. Kumar, T Krishna & Gapinski, James H, 1974. "Nonlinear Estimation of the CES Production Parameters: A Monte Carlo Study," The Review of Economics and Statistics, MIT Press, vol. 56(4), pages 563-567, November.
    56. Nakamura, Hideki & Nakamura, Masakatsu, 2008. "Constant-Elasticity-Of-Substitution Production Function," Macroeconomic Dynamics, Cambridge University Press, vol. 12(5), pages 694-701, November.
    57. Berthold Herrendorf & Christopher Herrington & Ákos Valentinyi, 2015. "Sectoral Technology and Structural Transformation," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(4), pages 104-133, October.
    58. Antràs Pol, 2004. "Is the U.S. Aggregate Production Function Cobb-Douglas? New Estimates of the Elasticity of Substitution," The B.E. Journal of Macroeconomics, De Gruyter, vol. 4(1), pages 1-36, April.
    59. Growiec, Jakub, 2018. "Factor-specific technology choice," Journal of Mathematical Economics, Elsevier, vol. 77(C), pages 1-14.
    60. Klump, Rainer & McAdam, Peter & Willman, Alpo, 2008. "Unwrapping some euro area growth puzzles: Factor substitution, productivity and unemployment," Journal of Macroeconomics, Elsevier, vol. 30(2), pages 645-666, June.
    61. Miguel A. León-Ledesma & Peter McAdam & Alpo Willman, 2010. "Identifying the Elasticity of Substitution with Biased Technical Change," American Economic Review, American Economic Association, vol. 100(4), pages 1330-1357, September.
    62. Reed, William J., 2001. "The Pareto, Zipf and other power laws," Economics Letters, Elsevier, vol. 74(1), pages 15-19, December.
    63. Thomas Piketty & Emmanuel Saez, 2003. "Income Inequality in the United States, 1913–1998," The Quarterly Journal of Economics, Oxford University Press, vol. 118(1), pages 1-41.
    64. Saam, Marianne, 2008. "Openness to trade as a determinant of the macroeconomic elasticity of substitution," Journal of Macroeconomics, Elsevier, vol. 30(2), pages 691-702, June.
    65. Klump, Rainer & Saam, Marianne, 2008. "Calibration of normalised CES production functions in dynamic models," Economics Letters, Elsevier, vol. 99(2), pages 256-259, May.
    66. Vladimir Matveenko, 2010. "Anatomy of production functions: a technological menu and a choice of the best technology," Economics Bulletin, AccessEcon, vol. 30(3), pages 1906-1913.
    67. H. S. Houthakker, 1955. "The Pareto Distribution and the Cobb-Douglas Production Function in Activity Analysis," Review of Economic Studies, Oxford University Press, vol. 23(1), pages 27-31.
    68. Robert M. Solow, 1962. "Substitution and Fixed Proportions in the Theory of Capital," Review of Economic Studies, Oxford University Press, vol. 29(3), pages 207-218.
    69. Chirinko, Robert S., 2002. "Corporate Taxation, Capital Formation,and the Substitution Elasticity Between Labor and Capital," National Tax Journal, National Tax Association;National Tax Journal, vol. 55(2), pages 339-355, June.
    70. Xue, Jianpo & Yip, Chong K., 2013. "Aggregate elasticity of substitution and economic growth: A synthesis," Journal of Macroeconomics, Elsevier, vol. 38(PA), pages 60-75.
    71. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    72. Gandolfo, Giancarlo, 2008. "Comment on "C.E.S. production functions in the light of the Cambridge critique"," Journal of Macroeconomics, Elsevier, vol. 30(2), pages 798-800, June.
    73. Schefold, Bertram, 2008. "C.E.S. production functions in the light of the Cambridge critique," Journal of Macroeconomics, Elsevier, vol. 30(2), pages 783-797, June.
    74. Yuhn, Ky-hyang, 1991. "Economic Growth, Technical Change Biases, and the Elasticity of Substitution: A Test of the De La Grandville Hypothesis," The Review of Economics and Statistics, MIT Press, vol. 73(2), pages 340-346, May.
    75. Rainer Klump & Peter McAdam & Alpo Willman, 2007. "Factor Substitution and Factor-Augmenting Technical Progress in the United States: A Normalized Supply-Side System Approach," The Review of Economics and Statistics, MIT Press, vol. 89(1), pages 183-192, February.
    76. Takayama, Akira, 1974. "On Biased Technological Progress," American Economic Review, American Economic Association, vol. 64(4), pages 631-639, September.
    77. Knoblach, Michael & Rößler, Martin & Zwerschke, Patrick, 2016. "The Elasticity of Factor Substitution Between Capital and Labor in the U.S. Economy: A Meta-Regression Analysis," CEPIE Working Papers 03/16, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    78. Thursby, Jerry, 1980. "Alternative CES Estimation Techniques," The Review of Economics and Statistics, MIT Press, vol. 62(2), pages 295-299, May.
    79. A. P. Lerner, 1933. "II.—The Diagrammatical Representation," Review of Economic Studies, Oxford University Press, vol. 1(1), pages 68-71.
    80. Dennis R. Maki & Lindsay N. Meredith, 1987. "A Note on Unionization and the Elasticity of Substitution," Canadian Journal of Economics, Canadian Economics Association, vol. 20(4), pages 792-801, November.
    81. Mallick, Debdulal, 2012. "The role of the elasticity of substitution in economic growth: A cross-country investigation," Labour Economics, Elsevier, vol. 19(5), pages 682-694.
    82. Rainer Klump & Peter McAdam & Alpo Willman, 2007. "The long-term sucCESs of the neoclassical growth model," Oxford Review of Economic Policy, Oxford University Press, vol. 23(1), pages 94-114, Spring.
    83. Erzo G. J. Luttmer, 2007. "Selection, Growth, and the Size Distribution of Firms," The Quarterly Journal of Economics, Oxford University Press, vol. 122(3), pages 1103-1144.
    84. Berthold Herrendorf & Christopher Herrington & Akos Valentinyi, 2012. "Sectoral Technology and Structural Transformation," CERS-IE WORKING PAPERS 1232, Institute of Economics, Centre for Economic and Regional Studies.
    85. Winford H. Masanjala & Chris Papageorgiou, 2004. "The Solow model with CES technology: nonlinearities and parameter heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(2), pages 171-201.
    86. Ronald W. Jones & Roy J. Ruffin, 2008. "Trade and Wages: a Deeper Investigation," Review of International Economics, Wiley Blackwell, vol. 16(2), pages 234-249, May.
    87. Fuss, Melvyn A, 1977. "The Structure of Technology over Time: A Model for Testing the "Putty-Clay" Hypothesis," Econometrica, Econometric Society, vol. 45(8), pages 1797-1821, November.
    88. Arne Henningsen & Géraldine Henningsen, 2011. "Econometric Estimation of the “Constant Elasticity of Substitution" Function in R: Package micEconCES," IFRO Working Paper 2011/9, University of Copenhagen, Department of Food and Resource Economics.
    89. Turnovsky, Stephen J., 2002. "Intertemporal and intratemporal substitution, and the speed of convergence in the neoclassical growth model," Journal of Economic Dynamics and Control, Elsevier, vol. 26(9-10), pages 1765-1785, August.
    90. Sherwin Rosen, 2005. "Substitution And Division Of Labour," World Scientific Book Chapters,in: An Inframarginal Approach To Trade Theory, chapter 3, pages 29-51 World Scientific Publishing Co. Pte. Ltd..
    91. Palivos, Theodore, 2008. "Comment on "[sigma]: The long and short of it"," Journal of Macroeconomics, Elsevier, vol. 30(2), pages 687-690, June.
    92. Rainer Klump, 2001. "Trade, money and employment in intertemporal optimizing models of growth," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 10(4), pages 411-428.
    93. Miyagiwa, Kaz, 2008. "Comment on "The endogenous aggregate elasticity of substitution for a small open economy"," Journal of Macroeconomics, Elsevier, vol. 30(2), pages 641-644, June.
    94. Yasushi Nakamura, 2015. "Productivity versus elasticity: a normalized constant elasticity of substitution production function applied to historical Soviet data," Applied Economics, Taylor & Francis Journals, vol. 47(53), pages 5805-5823, November.
    95. Jesus Felipe & John S.L. McCombie, 2013. "The Aggregate Production Function and the Measurement of Technical Change," Books, Edward Elgar Publishing, number 1975.
    96. Nakamura, Hideki, 2009. "Micro-foundation for a constant elasticity of substitution production function through mechanization," Journal of Macroeconomics, Elsevier, vol. 31(3), pages 464-472, September.
    97. Kenneth G. Stewart & Jiang Li, 2018. "Are factor biases and substitution identifiable? The Canadian evidence," Canadian Journal of Economics, Canadian Economics Association, vol. 51(2), pages 528-548, May.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    elasticity of substitution; aggregate elasticity; capital; labor; economic growth; microfoundation; Cobb-Douglas and CES production function;

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production
    • O14 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Industrialization; Manufacturing and Service Industries; Choice of Technology
    • O40 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:tudcep:0119. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - Leibniz Information Centre for Economics). General contact details of provider: http://edirc.repec.org/data/pltudde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.