IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/6720.html
   My bibliography  Save this paper

The Effects of Technology Shocks on Hours and Output: A Robustness Analysis

Author

Listed:
  • Canova, Fabio
  • López-Salido, J David
  • Michelacci, Claudio

Abstract

We analyze the effects of neutral and investment-specific technology shocks on hours and output. Long cycles in hours are captured in a variety of ways. Hours robustly fall in response to neutral shocks and robustly increase in response to investment specific shocks. The percentage of the variance of hours (output) explained by neutral shocks is small (large); the opposite is true for investment specific shocks. `News shocks' that generically change expectations about future productivity, are uncorrelated with the estimated technology shocks.

Suggested Citation

  • Canova, Fabio & López-Salido, J David & Michelacci, Claudio, 2008. "The Effects of Technology Shocks on Hours and Output: A Robustness Analysis," CEPR Discussion Papers 6720, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:6720
    as

    Download full text from publisher

    File URL: https://cepr.org/publications/DP6720
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fabio Canova & Luca Gambetti & Evi Pappa, 2007. "The Structural Dynamics of Output Growth and Inflation: Some International Evidence," Economic Journal, Royal Economic Society, vol. 117(519), pages 167-191, March.
    2. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Thomas J. Sargent & Mark W. Watson, 2007. "ABCs (and Ds) of Understanding VARs," American Economic Review, American Economic Association, vol. 97(3), pages 1021-1026, June.
    3. Miles S. Kimball & John G. Fernald & Susanto Basu, 2006. "Are Technology Improvements Contractionary?," American Economic Review, American Economic Association, vol. 96(5), pages 1418-1448, December.
    4. Fabio Canova & David Lopez-Salido & Claudio Michelacci, 2006. "Schumpeterian technology shocks," Economics Working Papers 1012, Department of Economics and Business, Universitat Pompeu Fabra, revised Nov 2007.
    5. Jonas D. M. Fisher, 2006. "The Dynamic Effects of Neutral and Investment-Specific Technology Shocks," Journal of Political Economy, University of Chicago Press, vol. 114(3), pages 413-451, June.
    6. Timothy J. Kehoe & Kim J. Ruhl, 2008. "Are Shocks to the Terms of Trade Shocks to Productivity?," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 11(4), pages 804-819, October.
    7. David Altig & Lawrence Christiano & Martin Eichenbaum & Jesper Linde, 2011. "Firm-Specific Capital, Nominal Rigidities and the Business Cycle," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(2), pages 225-247, April.
    8. Diego Comin & Mark Gertler, 2006. "Medium-Term Business Cycles," American Economic Review, American Economic Association, vol. 96(3), pages 523-551, June.
    9. Giordani, Paolo, 2004. "An alternative explanation of the price puzzle," Journal of Monetary Economics, Elsevier, vol. 51(6), pages 1271-1296, September.
    10. Claudio Michelacci & David Lopez-Salido, 2007. "Technology Shocks and Job Flows," Review of Economic Studies, Oxford University Press, vol. 74(4), pages 1195-1227.
    11. Dedola, Luca & Neri, Stefano, 2007. "What does a technology shock do? A VAR analysis with model-based sign restrictions," Journal of Monetary Economics, Elsevier, vol. 54(2), pages 512-549, March.
    12. Jordi Gali, 1999. "Technology, Employment, and the Business Cycle: Do Technology Shocks Explain Aggregate Fluctuations?," American Economic Review, American Economic Association, vol. 89(1), pages 249-271, March.
    13. Christopher J. Erceg & Luca Guerrieri & Christopher Gust, 2005. "Can Long-Run Restrictions Identify Technology Shocks?," Journal of the European Economic Association, MIT Press, vol. 3(6), pages 1237-1278, December.
    14. Harald Uhlig, 2004. "Do Technology Shocks Lead to a Fall in Total Hours Worked?," Journal of the European Economic Association, MIT Press, vol. 2(2-3), pages 361-371, 04/05.
    15. Evans, Charles L., 1992. "Productivity shocks and real business cycles," Journal of Monetary Economics, Elsevier, vol. 29(2), pages 191-208, April.
    16. Robert J. Vigfusson, 2004. "The delayed response to a technology shock: a flexible price explanation," International Finance Discussion Papers 810, Board of Governors of the Federal Reserve System (U.S.).
    17. Neville Francis & Valerie A. Ramey, 2009. "Measures of per Capita Hours and Their Implications for the Technology-Hours Debate," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(6), pages 1071-1097, September.
    18. Fabio Canova & David Lopez-Salido & Claudio Michelacci, 2010. "The effects of technology shocks on hours and output: a robustness analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(5), pages 755-773.
    19. Fernald, John G., 2007. "Trend breaks, long-run restrictions, and contractionary technology improvements," Journal of Monetary Economics, Elsevier, vol. 54(8), pages 2467-2485, November.
    20. Ellen R. McGrattan, 2006. "Real business cycles," Staff Report 370, Federal Reserve Bank of Minneapolis.
    21. John Fernald, 2004. "Trend Breaks, Long Run Restrictions, and the Contractionary Effects of Technology Shocks," 2004 Meeting Papers 477, Society for Economic Dynamics.
    22. David Altig & Lawrence Christiano & Martin Eichenbaum & Jesper Linde, 2011. "Firm-Specific Capital, Nominal Rigidities and the Business Cycle," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(2), pages 225-247, April.
    23. Paul Beaudry & Franck Portier, 2006. "Stock Prices, News, and Economic Fluctuations," American Economic Review, American Economic Association, vol. 96(4), pages 1293-1307, September.
    24. Francis, Neville & Ramey, Valerie A., 2005. "Is the technology-driven real business cycle hypothesis dead? Shocks and aggregate fluctuations revisited," Journal of Monetary Economics, Elsevier, vol. 52(8), pages 1379-1399, November.
    25. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2003. "What Happens After a Technology Shock?," NBER Working Papers 9819, National Bureau of Economic Research, Inc.
    26. Faust, Jon & Leeper, Eric M, 1997. "When Do Long-Run Identifying Restrictions Give Reliable Results?," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(3), pages 345-353, July.
    27. Dedola, Luca & Neri, Stefano, 2007. "What does a technology shock do? A VAR analysis with model-based sign restrictions," Journal of Monetary Economics, Elsevier, vol. 54(2), pages 512-549, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabio Canova & David López-Salido & Claudio Michelacci, 2006. "On the robust effects of technology shocks on hours worked and output," Economics Working Papers 1013, Department of Economics and Business, Universitat Pompeu Fabra, revised Feb 2008.
    2. Canova, Fabio & Michelacci, Claudio & López-Salido, J David, 2007. "The Labour Market Effects of Technology Shocks," CEPR Discussion Papers 6365, C.E.P.R. Discussion Papers.
    3. Gubler, Matthias & Hertweck, Matthias S., 2013. "Commodity price shocks and the business cycle: Structural evidence for the U.S," Journal of International Money and Finance, Elsevier, vol. 37(C), pages 324-352.
    4. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    5. Rujin, Svetlana, 2019. "What are the effects of technology shocks on international labor markets?," Ruhr Economic Papers 806, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    6. Cantore, Cristiano & Ferroni, Filippo & León-Ledesma, Miguel A., 2017. "The dynamics of hours worked and technology," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 67-82.
    7. Riccardo DiCecio & Michael T. Owyang, 2010. "Identifying technology shocks in the frequency domain," Working Papers 2010-025, Federal Reserve Bank of St. Louis.
    8. Andrei Polbin & Sergey Drobyshevsky, 2014. "Developing a Dynamic Stochastic Model of General Equilibrium for the Russian Economy," Research Paper Series, Gaidar Institute for Economic Policy, issue 166P, pages 156-156.
    9. Morten O. Ravn & Saverio Simonelli, 2007. "Labor Market Dynamics and the Business Cycle: Structural Evidence for the United States," Scandinavian Journal of Economics, Wiley Blackwell, vol. 109(4), pages 743-777, December.
    10. Justiniano, Alejandro & Primiceri, Giorgio E. & Tambalotti, Andrea, 2010. "Investment shocks and business cycles," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 132-145, March.
    11. Dedola, Luca & Neri, Stefano, 2007. "What does a technology shock do? A VAR analysis with model-based sign restrictions," Journal of Monetary Economics, Elsevier, vol. 54(2), pages 512-549, March.
    12. Gert Peersman & Roland Straub, 2009. "Technology Shocks And Robust Sign Restrictions In A Euro Area Svar," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(3), pages 727-750, August.
    13. Fabio Canova & David Lopez-Salido & Claudio Michelacci, 2009. "The ins and outs of unemployment: An analysis conditional on technology shocks," Economics Working Papers 1213, Department of Economics and Business, Universitat Pompeu Fabra, revised Jan 2012.
    14. Hikaru Saijo, 2019. "Technology Shocks and Hours Revisited: Evidence from Household Data," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 31, pages 347-362, January.
    15. Yadav, Jayant, 2020. "Flight to Safety in Business cycles," MPRA Paper 104093, University Library of Munich, Germany.
    16. Elstner, Steffen & Feld, Lars P. & Schmidt, Christoph M., 2018. "The German productivity paradox: Facts and explanations," Ruhr Economic Papers 767, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    17. Régis Barnichon, 2007. "Productivity, Aggregate Demand and Unemployment Fluctuations," CEP Discussion Papers dp0819, Centre for Economic Performance, LSE.
    18. Tim Berg, 2012. "Did monetary or technology shocks move euro area stock prices?," Empirical Economics, Springer, vol. 43(2), pages 693-722, October.
    19. Nadav Ben Zeev, 2019. "Is There A Single Shock That Drives The Majority Of Business Cycle Fluctuations?," Working Papers 1906, Ben-Gurion University of the Negev, Department of Economics.
    20. Lindé, Jesper, 2009. "The effects of permanent technology shocks on hours: Can the RBC-model fit the VAR evidence?," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 597-613, March.

    More about this item

    Keywords

    Technology disturbances; Structural vars; Long cycles; News shocks;
    All these keywords.

    JEL classification:

    • E00 - Macroeconomics and Monetary Economics - - General - - - General
    • J60 - Labor and Demographic Economics - - Mobility, Unemployment, Vacancies, and Immigrant Workers - - - General
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:6720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.cepr.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.