IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

A Bayesian Local Likelihood Method for Modelling Parameter Time Variation in DSGE Models

Listed author(s):
  • Ana Beatriz Galvão

    (University of Warwick)

  • Liudas Giraitis

    ()

    (Queen Mary University of London)

  • George Kapetanios

    ()

    (Queen Mary University of London)

  • Katerina Petrova

    (Queen Mary University of London)

DSGE models have recently received considerable attention in macroeconomic analysis and forecasting. They are usually estimated using Bayesian methods, which require the computation of the likelihood function under the assumption that the parameters of the model remain fixed throughout the sample. This paper presents a Local Bayesian Likelihood method suitable for estimation of DSGE models that can accommodate time variation in all parameters of the model. There are two advantages in allowing the parameters to vary over time. The first is that it enables us to assess the possibilities of regime changes, caused by shifts in the policy preferences or the volatility of shocks, as well as the possibility of misspecification in the design of DSGE models. The second advantage is that we can compute predictive densities based on the most recent parameters' values that could provide us with more accurate forecasts. The novel Bayesian Local Likelihood method applied to the Smets and Wouters (2007) model provides evidence of time variation in the policy parameters of the model as well as the volatility of the shocks. We also show that allowing for time variation improves considerably density forecasts in comparison to the fixed parameter model and we interpret this result as evidence for the presence of stochastic volatility in the structural shocks.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.econ.qmul.ac.uk/media/econ/research/workingpapers/2015/items/wp770.pdf
Download Restriction: no

Paper provided by Queen Mary University of London, School of Economics and Finance in its series Working Papers with number 770.

as
in new window

Length:
Date of creation: Dec 2015
Handle: RePEc:qmw:qmwecw:wp770
Contact details of provider: Postal:
London E1 4NS

Phone: +44 (0) 20 7882 5096
Fax: +44 (0) 20 8983 3580
Web page: http://www.econ.qmul.ac.uk

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez, 2007. "Estimating Macroeconomic Models: A Likelihood Approach," Review of Economic Studies, Oxford University Press, vol. 74(4), pages 1059-1087.
  2. Richard Clarida & Jordi Galí & Mark Gertler, 2000. "Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory," The Quarterly Journal of Economics, Oxford University Press, vol. 115(1), pages 147-180.
  3. Haroon Mumtaz & Paolo Surico, 2009. "Time-varying yield curve dynamics and monetary policy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(6), pages 895-913.
  4. Jordi Gali, 1999. "Technology, Employment, and the Business Cycle: Do Technology Shocks Explain Aggregate Fluctuations?," American Economic Review, American Economic Association, vol. 89(1), pages 249-271, March.
  5. Marvin Goodfriend & Robert King, 1997. "The New Neoclassical Synthesis and the Role of Monetary Policy," NBER Chapters,in: NBER Macroeconomics Annual 1997, Volume 12, pages 231-296 National Bureau of Economic Research, Inc.
  6. Canova, Fabio & Sala, Luca, 2009. "Back to square one: Identification issues in DSGE models," Journal of Monetary Economics, Elsevier, vol. 56(4), pages 431-449, May.
  7. Finn E. Kydland & Edward C. Prescott, 1996. "The Computational Experiment: An Econometric Tool," Journal of Economic Perspectives, American Economic Association, vol. 10(1), pages 69-85, Winter.
  8. Canova, Fabio & Ferroni, Filippo, 2012. "The dynamics of US inflation: Can monetary policy explain the changes?," Journal of Econometrics, Elsevier, vol. 167(1), pages 47-60.
  9. Raffaella Giacomini & Barbara Rossi, 2016. "Model Comparisons In Unstable Environments," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 57, pages 369-392, 05.
  10. Luca Gambetti & Jordi Galí, 2009. "On the Sources of the Great Moderation," American Economic Journal: Macroeconomics, American Economic Association, vol. 1(1), pages 26-57, January.
  11. Alejandro Justiniano & Giorgio E. Primiceri, 2008. "The Time-Varying Volatility of Macroeconomic Fluctuations," American Economic Review, American Economic Association, vol. 98(3), pages 604-641, June.
  12. Raf Wouters & Frank Smets, 2005. "Comparing shocks and frictions in US and euro area business cycles: a Bayesian DSGE Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 161-183.
  13. Peter N. Ireland, 2004. "Technology Shocks in the New Keynesian Model," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 923-936, November.
  14. Malin Adolfson & Michael K. Andersson & Jesper Lindé & Mattias Villani & Anders Vredin, 2007. "Modern Forecasting Models in Action: Improving Macroeconomic Analyses at Central Banks," International Journal of Central Banking, International Journal of Central Banking, vol. 3(4), pages 111-144, December.
  15. Frank Schorfheide, 2005. "Learning and Monetary Policy Shifts," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 392-419, April.
  16. Frank Schorfheide, 2000. "Loss function-based evaluation of DSGE models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 645-670.
  17. Martin Crowder, 1988. "Asymptotic expansions of posterior expectations, distributions and densities for stochastic processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 40(2), pages 297-309, June.
  18. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Bayesian VARs: Specification Choices and Forecast Accuracy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 46-73, 01.
  19. Timothy Cogley & Giorgio E. Primiceri & Thomas J. Sargent, 2010. "Inflation-Gap Persistence in the US," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(1), pages 43-69, January.
  20. Canova, Fabio & Gambetti, Luca, 2009. "Structural changes in the US economy: Is there a role for monetary policy?," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 477-490, February.
  21. Christopher A. Sims & Tao Zha, 2006. "Were There Regime Switches in U.S. Monetary Policy?," American Economic Review, American Economic Association, vol. 96(1), pages 54-81, March.
  22. Volker Wieland & Maik Wolters, 2011. "The diversity of forecasts from macroeconomic models of the US economy," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 47(2), pages 247-292, June.
  23. Rochelle M. Edge & Michael T. Kiley & Jean-Philippe Laforte, 2010. "A comparison of forecast performance between Federal Reserve staff forecasts, simple reduced-form models, and a DSGE model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 720-754.
  24. Giraitis, Liudas & Kapetanios, George & Price, Simon, 2013. "Adaptive forecasting in the presence of recent and ongoing structural change," Journal of Econometrics, Elsevier, vol. 177(2), pages 153-170.
  25. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez, 2008. "How Structural Are Structural Parameters?," NBER Chapters,in: NBER Macroeconomics Annual 2007, Volume 22, pages 83-137 National Bureau of Economic Research, Inc.
  26. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
  27. Jean Boivin & Marc P. Giannoni, 2006. "Has Monetary Policy Become More Effective?," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 445-462, August.
  28. Christoffel, Kai & Warne, Anders & Coenen, Günter, 2010. "Forecasting with DSGE models," Working Paper Series 1185, European Central Bank.
  29. John Geweke, 1999. "Computational Experiments and Reality," Computing in Economics and Finance 1999 401, Society for Computational Economics.
  30. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," Review of Economic Studies, Oxford University Press, vol. 72(3), pages 821-852.
  31. Mr Steinbach & Pt Mathuloe & Bw Smit, 2009. "An Open Economy New Keynesian Dsge Model Of The South African Economy," South African Journal of Economics, Economic Society of South Africa, vol. 77(2), pages 207-227, June.
  32. Benati, Luca & Mumtaz, Haroon, 2007. "U.S. evolving macroeconomic dynamics: a structural investigation," Working Paper Series 746, European Central Bank.
  33. Rubaszek, Michal & Skrzypczynski, Pawel, 2008. "On the forecasting performance of a small-scale DSGE model," International Journal of Forecasting, Elsevier, vol. 24(3), pages 498-512.
  34. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
  35. Jae-Young Kim, 1998. "Large Sample Properties of Posterior Densities, Bayesian Information Criterion and the Likelihood Principle in Nonstationary Time Series Models," Econometrica, Econometric Society, vol. 66(2), pages 359-380, March.
  36. Frank Smets & Raf Wouters, 2003. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1123-1175, 09.
  37. Timothy Cogley & Argia M. Sbordone, 2008. "Trend Inflation, Indexation, and Inflation Persistence in the New Keynesian Phillips Curve," American Economic Review, American Economic Association, vol. 98(5), pages 2101-2126, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:qmw:qmwecw:wp770. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nicholas Owen)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.