IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Identification of Technology Shocks in Structural VARs

  • Fève, Patrick
  • Guay, Alain

The usefulness of SVARs for developing empirically plausible models is actually subject to controversies in macroeconomics. We propose a two-step SVARs-based procedure which consistently estimates the effect of permanent technology shocks on aggregate variables. Simulation experiments from a standard business cycle model and a sticky prices model show that our approach outperforms standard SVARs. The two-step procedure, when applied to actual data, predicts a significant short-run decrease of hours after a technology improvement followed by a hump-shaped positive response. Additionally, the rate of inflation and the nominal interest rate displays a significant decrease after this shock. Copyright (C) The Author(s). Journal compilation (C) Royal Economic Society 2009.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://idei.fr/sites/default/files/medias/doc/wp/2006/identification.pdf
File Function: Full text
Download Restriction: no

Paper provided by Institut d'Économie Industrielle (IDEI), Toulouse in its series IDEI Working Papers with number 383.

as
in new window

Length:
Date of creation: Feb 2006
Date of revision:
Publication status: Published in The Economic Journal, vol.�120, n°549, décembre 2010, p.�1284-1318.
Handle: RePEc:ide:wpaper:5360
Contact details of provider: Postal: Manufacture des Tabacs, Aile Jean-Jacques Laffont, 21 Allée de Brienne, 31000 TOULOUSE
Phone: +33 (0)5 61 12 85 89
Fax: + 33 (0)5 61 12 86 37
Web page: http://www.idei.fr/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. V V Chari & Patrick J Kehoe & Ellen R. McGrattan, 2003. "Business Cycle Accounting," Levine's Bibliography 506439000000000421, UCLA Department of Economics.
  2. Cooley, Thomas F. & Dwyer, Mark, 1998. "Business cycle analysis without much theory A look at structural VARs," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 57-88.
  3. Jordi Gali & Pau Rabanal, 2004. "Technology Shocks and Aggregate Fluctuations: How Well Does the RBS Model Fit Postwar U.S. Data?," NBER Working Papers 10636, National Bureau of Economic Research, Inc.
  4. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-73, September.
  5. Jon Faust & Eric M. Leeper, 1994. "When do long-run identifying restrictions give reliable results?," FRB Atlanta Working Paper No. 94-2, Federal Reserve Bank of Atlanta.
  6. Francis, Neville & Ramey, Valerie A., 2005. "Is the technology-driven real business cycle hypothesis dead? Shocks and aggregate fluctuations revisited," Journal of Monetary Economics, Elsevier, vol. 52(8), pages 1379-1399, November.
  7. Cooley, Thomas F. & Leroy, Stephen F., 1985. "Atheoretical macroeconometrics: A critique," Journal of Monetary Economics, Elsevier, vol. 16(3), pages 283-308, November.
  8. Peter N. Ireland, 2002. "Endogenous Money or Sticky Prices?," NBER Working Papers 9390, National Bureau of Economic Research, Inc.
  9. Lawrence J. Christiano & Martin Eichenbaum & Charles Evans, 2001. "Nominal rigidities and the dynamic effects of a shock to monetary policy," Proceedings, Federal Reserve Bank of San Francisco, issue Jun.
  10. Newey, Whitney K & West, Kenneth D, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," Review of Economic Studies, Wiley Blackwell, vol. 61(4), pages 631-53, October.
  11. Craig Burnside & Martin Eichenbaum, 1994. "Factor Hoarding and the Propagation of Business Cycles Shocks," NBER Working Papers 4675, National Bureau of Economic Research, Inc.
  12. Cochrane, John H, 1994. "Permanent and Transitory Components of GNP and Stock Prices," The Quarterly Journal of Economics, MIT Press, vol. 109(1), pages 241-65, February.
  13. Pao-Li Chang & Shinichi Sakata, 2007. "Estimation of impulse response functions using long autoregression," Econometrics Journal, Royal Economic Society, vol. 10(2), pages 453-469, 07.
  14. Yongsung Chang & Taeyoung Doh & Frank Schorfheide, 2007. "Non-stationary Hours in a DSGE Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(6), pages 1357-1373, 09.
  15. Lawrence J. Christiano & Martin Eichenbaum, 1990. "Current real business cycle theories and aggregate labor market fluctuations," Working Paper Series, Macroeconomic Issues 90, Federal Reserve Bank of Chicago.
  16. Elena Pesavento & Barbara Rossi, 2004. "Do Technology Shocks Drive Hours Up or Down? A Little Evidence From an Agnostic Procedure," Econometrics 0411002, EconWPA.
  17. Robert G. King & Charles I. Plosser & James H. Stock & Mark W. Watson, 1991. "Stochastic trends and economic fluctuations," Working Paper Series, Macroeconomic Issues 91-4, Federal Reserve Bank of Chicago.
  18. Neville Francis & Michael T. Owyang & Jennifer E. Roush, 2005. "A flexible finite-horizon identification of technology shocks," International Finance Discussion Papers 832, Board of Governors of the Federal Reserve System (U.S.).
  19. Ravenna, Federico, 2007. "Vector autoregressions and reduced form representations of DSGE models," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 2048-2064, October.
  20. Newey, Whitney K., 1984. "A method of moments interpretation of sequential estimators," Economics Letters, Elsevier, vol. 14(2-3), pages 201-206.
  21. Harald Uhlig, 2004. "Do Technology Shocks Lead to a Fall in Total Hours Worked?," Journal of the European Economic Association, MIT Press, vol. 2(2-3), pages 361-371, 04/05.
  22. Christopher J. Erceg & Luca Guerrieri & Christopher Gust, 2005. "Can Long-Run Restrictions Identify Technology Shocks?," Journal of the European Economic Association, MIT Press, vol. 3(6), pages 1237-1278, December.
  23. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2003. "What Happens After a Technology Shock?," NBER Working Papers 9819, National Bureau of Economic Research, Inc.
  24. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-66, July.
  25. Robert E. Hall, 1997. "Macroeconomic Fluctuations and the Allocation of Time," NBER Working Papers 5933, National Bureau of Economic Research, Inc.
  26. Robert J. Vigfusson, 2004. "The delayed response to a technology shock: a flexible price explanation," International Finance Discussion Papers 810, Board of Governors of the Federal Reserve System (U.S.).
  27. Galí, Jordi & Rabanal, Pau, 2004. "Technology Shocks and Aggregate Fluctuations: How Well Does the RBC Model Fit Post-War US Data?," CEPR Discussion Papers 4522, C.E.P.R. Discussion Papers.
  28. V. V. Chari & Patrick J. Kehoe & Ellen R. McGrattan, 2005. "A critique of structural VARs using real business cycle theory," Working Papers 631, Federal Reserve Bank of Minneapolis.
  29. Lewis, Richard & Reinsel, Gregory C., 1985. "Prediction of multivariate time series by autoregressive model fitting," Journal of Multivariate Analysis, Elsevier, vol. 16(3), pages 393-411, June.
  30. Neville Francis & Michael T. Owyang & Jennifer E. Roush & Riccardo DiCecio, 2010. "A flexible finite-horizon alternative to long-run restrictions with an application to technology shock," Working Papers 2005-024, Federal Reserve Bank of St. Louis.
  31. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-54, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ide:wpaper:5360. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.