IDEAS home Printed from https://ideas.repec.org/p/duk/dukeec/03-23.html
   My bibliography  Save this paper

Do Technology Shocks Drive Hours Up or Down? A Little Evidence from an Agnostic Procedure

Author

Listed:
  • Rossi, Barbara
  • Pesavento, Elena

Abstract

This paper analyzes the robustness of the estimate of a positive productivity shock on hours to the presence of a possible unit root in hours. Estimations in levels or in first differences provide opposite conclusions. We rely on an agnostic procedure in which the researcher does not have to choose between a specification in levels or in first differences. We find that a positive productivity shock has a negative effect on hours, as in Francis and Ramey (2001), but the effect is much more short-lived, and disappears after two quarters. The effect becomes positive at business cycle frequencies, as in Christiano et al. (2003).

Suggested Citation

  • Rossi, Barbara & Pesavento, Elena, 2003. "Do Technology Shocks Drive Hours Up or Down? A Little Evidence from an Agnostic Procedure," Working Papers 03-23, Duke University, Department of Economics.
  • Handle: RePEc:duk:dukeec:03-23
    as

    Download full text from publisher

    File URL: http://www.econ.duke.edu/Papers/Abstracts03/abstract.03.23.html
    File Function: main text
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
    2. Jordi Gali, 1999. "Technology, Employment, and the Business Cycle: Do Technology Shocks Explain Aggregate Fluctuations?," American Economic Review, American Economic Association, vol. 89(1), pages 249-271, March.
    3. Elliott, Graham, 1999. "Efficient Tests for a Unit Root When the Initial Observation Is Drawn from Its Unconditional Distribution," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(3), pages 767-783, August.
    4. Neville Francis & Valerie A. Ramey, 2002. "Is the Technology-Driven Real Business Cycle Hypothesis Dead?," NBER Working Papers 8726, National Bureau of Economic Research, Inc.
    5. Graham Elliott & Michael Jansson & Elena Pesavento, 2005. "Optimal Power for Testing Potential Cointegrating Vectors With Known Parameters for Nonstationarity," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 34-48, January.
    6. Elliott, Graham & Jansson, Michael, 2003. "Testing for unit roots with stationary covariates," Journal of Econometrics, Elsevier, vol. 115(1), pages 75-89, July.
    7. Perron, Pierre & Rodriguez, Gabriel, 2003. "GLS detrending, efficient unit root tests and structural change," Journal of Econometrics, Elsevier, vol. 115(1), pages 1-27, July.
    8. Elliott, Graham & Stock, James H., 2001. "Confidence intervals for autoregressive coefficients near one," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 155-181, July.
    9. Kilian, Lutz & Chang, Pao-Li, 2000. "How accurate are confidence intervals for impulse responses in large VAR models?," Economics Letters, Elsevier, vol. 69(3), pages 299-307, December.
    10. Barbara Rossi & Elena Pesavento, 2006. "Small-sample confidence intervals for multivariate impulse response functions at long horizons," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(8), pages 1135-1155.
    11. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2003. "What Happens After a Technology Shock?," NBER Working Papers 9819, National Bureau of Economic Research, Inc.
    12. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    13. Stock, James H., 1991. "Confidence intervals for the largest autoregressive root in U.S. macroeconomic time series," Journal of Monetary Economics, Elsevier, vol. 28(3), pages 435-459, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghent, Andra C., 2009. "Comparing DSGE-VAR forecasting models: How big are the differences?," Journal of Economic Dynamics and Control, Elsevier, vol. 33(4), pages 864-882, April.
    2. Patrick Fève & Alain Guay, 2010. "Identification of Technology Shocks in Structural Vars," Economic Journal, Royal Economic Society, vol. 120(549), pages 1284-1318, December.
    3. Jordi Gali Garreta & Pau Rabanal, 2004. "Technology Shocks and Aggregate Fluctuations; How Well Does the RBC Model Fit Postwar U.S. Data?," IMF Working Papers 04/234, International Monetary Fund.
    4. Caporale, Guglielmo Maria & Gil-Alana, Luis A., 2014. "Persistence and cycles in US hours worked," Economic Modelling, Elsevier, vol. 38(C), pages 504-511.
    5. Ali YOUSEFI & Sadegh KHALILIAN & Mohammad Hadi HAJIAN, "undated". "The Role of Water Sector in Iranian Economy: A CGE Modeling Approach," EcoMod2010 259600173, EcoMod.
    6. Jordi Gali Garreta & Pau Rabanal, 2004. "Technology Shocks and Aggregate Fluctuations; How Well Does the RBC Model Fit Postwar U.S. Data?," IMF Working Papers 04/234, International Monetary Fund.
    7. Ulrich K. Müller & Mark W. Watson, 2008. "Testing Models of Low-Frequency Variability," Econometrica, Econometric Society, vol. 76(5), pages 979-1016, September.
    8. Di Pace, Federico & Villa, Stefania, 2016. "Factor complementarity and labour market dynamics," European Economic Review, Elsevier, vol. 82(C), pages 70-112.
    9. Morten O. Ravn & Saverio Simonelli, 2008. "Labor Market Dynamics and the Business Cycle: Structural Evidence for the United States," Scandinavian Journal of Economics, Wiley Blackwell, vol. 109(4), pages 743-777, March.
    10. Nikolay Gospodinov & Alex Maynard & Elena Pesavento, 2011. "Sensitivity of Impulse Responses to Small Low-Frequency Comovements: Reconciling the Evidence on the Effects of Technology Shocks," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(4), pages 455-467, October.
    11. Lovcha, Yuliya & Pérez Laborda, Àlex, 2016. "The Variance-Frequency Decomposition as an Instrument for VAR Identification: an Application to Technology Shocks," Working Papers 2072/261537, Universitat Rovira i Virgili, Department of Economics.
    12. Riccardo DiCecio & Michael T. Owyang, 2010. "Identifying technology shocks in the frequency domain," Working Papers 2010-025, Federal Reserve Bank of St. Louis.

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • F40 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:duk:dukeec:03-23. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Department of Economics Webmaster). General contact details of provider: http://econ.duke.edu/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.